47 research outputs found

    The immunopathology of ANCA-associated vasculitis.

    Get PDF
    The small-vessel vasculitides are a group of disorders characterised by variable patterns of small blood vessel inflammation producing a markedly heterogeneous clinical phenotype. While any vessel in any organ may be involved, distinct but often overlapping sets of clinical features have allowed the description of three subtypes associated with the presence of circulating anti-neutrophil cytoplasmic antibodies (ANCA), namely granulomatosis with polyangiitis (GPA, formerly known as Wegener's Granulomatosis), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (eGPA, formerly known as Churg-Strauss syndrome). Together, these conditions are called the ANCA-associated vasculitidies (AAV). Both formal nomenclature and classification criteria for the syndromes have changed repeatedly since their description over 100 years ago and may conceivably do so again following recent reports showing distinct genetic associations of patients with detectable ANCA of distinct specificities. ANCA are not only useful in classifying the syndromes but substantial evidence implicates them in driving disease pathogenesis although the mechanism by which they develop and tolerance is broken remains controversial. Advances in our understanding of the pathogenesis of the syndromes have been accompanied by some progress in treatment, although much remains to be done to improve the chronic morbidity associated with the immunosuppression required for disease control

    ANCA-associated vasculitis.

    Get PDF
    The anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) are a group of disorders involving severe, systemic, small-vessel vasculitis and are characterized by the development of autoantibodies to the neutrophil proteins leukocyte proteinase 3 (PR3-ANCA) or myeloperoxidase (MPO-ANCA). The three AAV subgroups, namely granulomatosis with polyangiitis (GPA), microscopic polyangiitis and eosinophilic GPA (EGPA), are defined according to clinical features. However, genetic and other clinical findings suggest that these clinical syndromes may be better classified as PR3-positive AAV (PR3-AAV), MPO-positive AAV (MPO-AAV) and, for EGPA, by the presence or absence of ANCA (ANCA+ or ANCA-, respectively). Although any tissue can be involved in AAV, the upper and lower respiratory tract and kidneys are most commonly and severely affected. AAVs have a complex and unique pathogenesis, with evidence for a loss of tolerance to neutrophil proteins, which leads to ANCA-mediated neutrophil activation, recruitment and injury, with effector T cells also involved. Without therapy, prognosis is poor but treatments, typically immunosuppressants, have improved survival, albeit with considerable morbidity from glucocorticoids and other immunosuppressive medications. Current challenges include improving the measures of disease activity and risk of relapse, uncertainty about optimal therapy duration and a need for targeted therapies with fewer adverse effects. Meeting these challenges requires a more detailed knowledge of the fundamental biology of AAV as well as cooperative international research and clinical trials with meaningful input from patients

    Pathogenesis and therapeutic interventions for ANCA-associated vasculitis.

    Get PDF
    Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) affects systemic small vessels and is accompanied by the presence of ANCAs in the serum. This disease entity includes microscopic polyangiitis, granulomatosis with polyangiitis, eosinophilic granulomatosis with polyangiitis and drug-induced AAV. Similar to other autoimmune diseases, AAV develops in patients with a predisposing genetic background who have been exposed to causative environmental factors. The mechanism by which ANCAs cause vasculitis involves ANCA-mediated excessive activation of neutrophils that subsequently release inflammatory cytokines, reactive oxygen species and lytic enzymes. In addition, this excessive activation of neutrophils by ANCAs induces formation of neutrophil extracellular traps (NETs). Although NETs are essential elements in innate immunity, excessive NET formation is harmful to small vessels. Moreover, NETs are involved not only in ANCA-mediated vascular injury but also in the production of ANCAs themselves. Therefore, a vicious cycle of NET formation and ANCA production is considered to be involved in the pathogenesis of AAV. In addition to this role of NETs in AAV, some other important discoveries have been made in the past few years. Incorporating these new insights into our understanding of the pathogenesis of AAV is needed to fully understand and ultimately overcome this disease
    corecore