37 research outputs found

    The Rare Earth Elements: demand, global resources, and challenges for resourcing future generations

    Get PDF
    The rare earth elements (REE) have attracted much attention in recent years, being viewed as critical metals because of China’s domination of their supply chain. This is despite the fact that REE enrichments are known to exist in a wide range of settings, and have been the subject of much recent exploration. Although the REE are often referred to as a single group, in practice each individual element has a specific set of end-uses, and so demand varies between them. Future demand growth to 2026 is likely to be mainly linked to the use of NdFeB magnets, particularly in hybrid and electric vehicles and wind turbines, and in erbium-doped glass fiber for communications. Supply of lanthanum and cerium is forecast to exceed demand. There are several different types of natural (primary) REE resources, including those formed by high-temperature geological processes (carbonatites, alkaline rocks, vein and skarn deposits) and those formed by low-temperature processes (placers, laterites, bauxites and ion-adsorption clays). In this paper, we consider the balance of the individual REE in each deposit type and how that matches demand, and look at some of the issues associated with developing these deposits. This assessment and overview indicate that while each type of REE deposit has different advantages and disadvantages, light rare earth-enriched ion adsorption types appear to have the best match to future REE needs. Production of REE as by-products from, for example, bauxite or phosphate, is potentially the most rapid way to produce additional REE. There are still significant technical and economic challenges to be overcome to create substantial REE supply chains outside China

    Persons with chronic hip joint pain exhibit reduced hip muscle strength

    No full text
    STUDY DESIGN: Controlled Laboratory Cross-Sectional Study OBJECTIVES: To assess strength differences of the hip rotator and abductor muscle groups in young adults with chronic hip joint pain (CHJP) and asymptomatic controls. A secondary objective was to determine if strength in the uninvolved hip of those with unilateral CHJP differs from asymptomatic controls. BACKGROUND: Little is known about the relationship between hip muscle strength and CHJP in young adults. METHODS: 35 participants with CHJP and 35 matched controls (18 to 40 years of age) participated. Using hand-held dynamometry, strength of the hip external rotators (ERs) and internal rotators (IRs) was assessed with the hip flexed to 90° (ERs90°, IRs90°) and 0° (ERs0°, IRs0°). To assess ER and IR strength, the hip was placed at the end-range of external rotation and internal rotation, respectively. Strength of the hip abductors (ABDs) was assessed in sidelying, with the hip in 15° of abduction. Break tests were performed to determine maximum muscle force and the average torque was calculated using the corresponding moment arm. Independent samples t-tests were used to compare strength values between the 1) involved limb in participants with CHJP and corresponding limb in the matched controls and 2) the uninvolved limb in participants with unilateral CHJP and corresponding limb in the matched controls. RESULTS: Compared to controls, participants with CHJP demonstrated weakness of 16–28%, (P<0.01) in all muscle groups tested in the involved hip. The uninvolved hip of 22 subjects with unilateral CHJP demonstrated weakness of 18% and 16% (P<0.05) in the ERs0° and ABDs, respectively when compared to the corresponding limb of the matched controls. CONCLUSION: Our results demonstrate that persons with CHJP have weakness in the hip rotator and hip abductor muscles. Weakness also was found in the uninvolved hip of persons with CHJP
    corecore