1,013 research outputs found

    Dynamics of genetic rescue in inbred <i>Drosophila melanogaster</i> populations

    Get PDF
    Genetic rescue has been proposed as a management strategy to improve the fitness of genetically eroded populations by alleviating inbreeding depression. We studied the dynamics of genetic rescue in inbred populations of Drosophila. Using balancer chromosomes, we show that the force of heterosis that accompanies genetic rescue is large and allows even a recessive lethal to increase substantially in frequency in the rescued populations, particularly at stress temperatures. This indicates that deleterious alleles present in the immigrants can increase significantly in frequency in the recipient population when they are in linkage disequilibrium with genes responsible for the heterosis. In a second experiment we rescued eight inbred Drosophila populations with immigrants from two other inbred populations and observe: (i) there is a significant increase in viability both 5 and 10 generations after the rescue event, showing that the increase in fitness is not transient but persists long-term. (ii) The lower the fitness of the recipient population the larger the fitness increase. (iii) The increase in fitness depends significantly on the origin of the rescuers. The immigrants used were fixed for a conditional lethal that was mildly deleterious at 25A degrees C but lethal at 29A degrees C. By comparing fitness at 25A degrees C (the temperature during the rescue experiment) and 29A degrees C, we show that the lethal allele reached significant frequencies in most rescued populations, which upon renewed inbreeding became fixed in part of the inbred lines. In conclusion, in addition to the fitness increase genetic rescue can easily result in a substantial increase in the frequency of mildly deleterious alleles carried by the immigrants. This can endanger the rescued population greatly when it undergoes recurrent inbreeding. However, using a sufficient number of immigrants and to accompany the rescue event with the right demographic measures will overcome this problem. As such, genetic rescue still is a viable option to manage genetically eroded populations

    Explaining artificial side channel dynamics using data analysis and model calculations

    Get PDF
    Side channel construction is a common intervention to increase both flood safety and the ecological value of the river. Three side channels of Gameren in the river Waal (The Netherlands) show amounts of large aggradation. We use bed level measurements and grain size samples to characterize the development of the side channels. We relate the bed level changes and the deposited sediment in the side channels to the results of hydrodynamic computations. Two of the three side channels filled mainly with suspended bed-material load. In one of these channels, the bed level increased enough that vegetation has grown and fine suspended load has settled. In the third side channel, the bed shear stresses are much smaller and, in addition to the suspended bed-material load, fine sediment settles. Based on the side channel system at Gameren, we identify two types of side channels: one type fills predominantly with suspended bed-material load from the main channel and a second type fills predominantly with fine suspended load. This gives an indication of the main mechanisms that lead to the aggradation in artificial side channel systems.<br/

    Exploring facilitators and barriers to using a person centered care intervention in a nursing home setting

    Get PDF
    Person-centered care (PCC) interventions have the potential to improve resident well-being in nursing homes, but can be difficult to implement. This study investigates perceived facilitators and barriers reported by nursing staff to using a PCC intervention consisting of three components: assessment of resident well-being, planning of well-being support, and behavioral changes in care to support resident well-being. Our explorative mixed method study combined interviews (n = 11) with a longitudinal survey (n = 132) to examine which determinants were most prevalent and predictive for intention to use the intervention and actual implementation 3 months later (n = 63). Results showed that perceived barriers and facilitators were dependent on the components of the intervention. Assessment of resident well-being required a stable nursing home context and a detailed implementation plan, while planning of well-being support was impeded by knowledge. Behavioral changes in nursing care required easy integration in daily caring tasks and social support

    Simultaneous determination of wave speed and arrival time of reflected waves using the pressure-velocity loop

    Get PDF
    This is the post print version of the article. The official published version can be found at the link below.In a previous paper we demonstrated that the linear portion of the pressure–velocity loop (PU-loop) corresponding to early systole could be used to calculate the local wave speed. In this paper we extend this work to show that determination of the time at which the PU-loop first deviates from linearity provides a convenient way to determine the arrival time of reflected waves (Tr). We also present a new technique using the PU-loop that allows for the determination of wave speed and Tr simultaneously. We measured pressure and flow in elastic tubes of different diameters, where a strong reflection site existed at known distances away form the measurement site. We also measured pressure and flow in the ascending aorta of 11 anaesthetised dogs where a strong reflection site was produced through total arterial occlusion at four different sites. Wave speed was determined from the initial slope of the PU-loop and Tr was determined using a new algorithm that detects the sampling point at which the initial linear part of the PU-loop deviates from linearity. The results of the new technique for detecting Tr were comparable to those determined using the foot-to-foot and wave intensity analysis methods. In elastic tubes Tr detected using the new algorithm was almost identical to that detected using wave intensity analysis and foot-to-foot methods with a maximum difference of 2%. Tr detected using the PU-loop in vivo highly correlated with that detected using wave intensity analysis (r 2 = 0.83, P < 0.001). We conclude that the new technique described in this paper offers a convenient and objective method for detecting Tr, and allows for the dynamic determination of wave speed and Tr, simultaneously

    Dermal substitutes for full‐thickness wounds in a one‐stage grafting model

    Get PDF
    We tested different biodegradable matrix materials as dermal substitutes in a porcine wound model. Matrixes were covered with a split-skin mesh graft and protected with a microporous, semipermeable membrane, which prevents blister formation, wound infection and provides ultimate healing conditions. Evaluation parameters were as follows: epithelization, dermal reconstitution, wound contraction, and cosmetic and functional aspect. A microfibrillar matrix of nondenatured collagen gave the best result, with immediate fibroblast ingrowth and epidermal outgrowth. Slight inflammatory reaction and minimal wound contraction were observed. Application of a split-skin mesh graft, in combination with this collagen matrix, generated a thicker dermal layer than did a split-skin mesh graft directly applied on a wound bed. However, the histologic dermal architecture was less optimal than one obtained with a full-thickness punch graft method. Other matrixes caused inflammatory reactions, interfering with epithelization and dermal reconstitution. We conclude that a nondenatured collagen matrix, in combination with a split-skin mesh graft, can provide a substitute dermis in a full-thickness wound. This combination is preferable to a split-skin mesh graft directly applied on the wound bed. With our microporous semipermeable membrane, the combined use of a dermal substitute and a split-skin mesh graft can be applied in a single-stage operatio

    What Factors are Associated with Flourishing? Results from a Large Representative National Sample

    Get PDF
    Flourishing is the ultimate end-state in psychology and a key-concept in the field of positive psychology research. Flourishers are those individuals with both high levels of hedonic well-being and eudaimonic well-being. Although many researchers have focused on one or another of these domains, only a few have investigated the comprehensive state of flourishing. The purpose of this study was to examine the prevalence of flourishing and its association with socio-demographics, personality traits and situational factors. This study used data from the second wave of the Netherlands Mental Health Survey and Incidence Study-2 (NEMESIS-2), a national representative sample of adults in The Netherlands (n = 5303; 2010–2012). Findings were compared to having either high hedonic well-being or high eudaimonic well-being. Results showed that 37 % of the respondents were flourishers, mainly characterized by high levels of conscientiousness and extraversion and low levels of neuroticism. The situational factors of social support and positive life-events were significantly associated with flourishing when the analysis was controlled for socio-demographics and personality traits. Flourishing was most distinct from high hedonic well-being and showed parallelism with high eudaimonic well-being. More research is needed to establish a preferred flourishing instrument with validated cut-off points for flourishing and to understand the processes of situational factors that may underlie the promotion of flourishing. We recommend longitudinal designs and experience sampling studies to investigate the unique and modifiable predictors of flourishing. In addition, future research should include intervention studies that examine through which hedonic and eudaimonic pathways flourishing can be achieve

    B2.5-Eunomia simulations of Magnum-PSI detachment experiments: I. Quantitative comparisons with experimental measurements

    Get PDF
    Detachment experiments have been carried out in the linear plasma device Magnum-PSI by increasing the gas pressure near the target. In order to have a proper detailed analysis of the mechanism behind momentum and power loss in detachment, a quantitative match is pursued between B2.5-Eunomia solutions and experimental data. B2.5 is a multi fluid plasma code and Eunomia is a Monte Carlo solver for neutral particles, and they are coupled together to provide steady-state solution of the plasma and neutral distribution in space. B2.5-Eunomia input parameters are adjusted to produce a close replication of the plasma beam measured in the experiments without any gas puffing in the target chamber. Using this replication as an initial condition, the neutral pressure near the plasma beam target is exclusively increased during simulation, matching the pressures measured in the experiments. Reasonable agreement is found between the electron temperature of the simulation results with experimental measurements using laser Thomson scattering near the target. The simulations also reveal the effect of increased gas pressure on the plasma current, effectively reducing the current penetration from the plasma source. B2.5-Eunomia is capable of reproducing detachment characteristics, namely the loss of plasma pressure along the magnetic field and the reduction of particle and heat flux to the target. The simulation results for plasma and neutrals will allow future studies of the exact contribution of individual plasma-neutral collisions to momentum and energy loss in detachment in Magnum-PSI.</p
    • 

    corecore