706 research outputs found
Toxoplasma gondii profilin does not stimulate an innate immune response through bovine or human TLR5
Toxoplasma gondii is responsible for one of the most prevalent infections in people. T. gondii profilin (TgPr) is a protein integral to parasite movement and cellular invasion. Murine TLR has been described to bind TgPr. Furthermore, more recently, human TLR5 has been described to recognise recombinant TgPr, as well as bacterial flagellin. In addition to infections in humans, T. gondii infects farm animals, but little information is available about its innate recognition. We aimed to investigate whether, similarly to their human orthologue, bovine and porcine TLR5 could also be stimulated by TgPr by using a combination of reporter cell lines expressing full length TLR5 from each species as well as primary cells. Although human and bovine TLR5-transfected cells responded to flagellin, no response was detected upon stimulation
with profilin. Furthermore, TgPr failed to elicit IL-6 secretion in human peripheral blood mononuclear cells and CD14þ monocytes. In contrast, exposure of RAW cells, known to express TLR11 to TgPr, slightly increased the IL-6 response. Our data cast doubts on the possibility that profilin is a specific ligand for human TLR5 and bovine TLR5. This leaves the immunogenic properties of this potential target antigen uncharacterised outside of the murine system
Combining Genome Wide Association Studies and Differential Gene Expression Data Analyses Identifies Candidate Genes Affecting Mastitis Caused by Two Different Pathogens in the Dairy Cow
Mastitis is a costly disease which hampers the dairy industry. Inflammation of the mammary gland is commonly caused by bacterial infection, mainly Escherichia coli, Streptococcus uberis and Staphylococcus aureus. As more bacteria become multi-drug resistant, one potential approach to reduce the disease incidence rate is to breed selectively for the most appropriate and potentially protective innate immune response. The genetic contribution to effective disease resistance is, however, difficult to identify due to the complex interactions that occur. In the present study two published datasets were searched for common differentially expressed genes (DEGs) with similar changes in expression in mammary tissue following intra-mammary challenge with either E. coli or S. uberis. Additionally, the results of seven published genome-wide association studies (GWAS) on different dairy cow populations were used to compile a list of SNPs associated with somatic cell count. All genes located within 2 Mbp of significant SNPs were retrieved from the Ensembl database, based on the UMD3.1 assembly. A final list of 48 candidate genes with a role in the innate immune response identified from both the DEG and GWAS studies was further analyzed using Ingenuity Pathway Analysis. The main signalling pathways highlighted in the response of the bovine mammary gland to both bacterial infections were 1) granulocyte adhesion and diapedesis, 2) ephrin receptor signalling, 3) RhoA signalling and 4) LPS/IL1 mediated inhibition of RXR function. These pathways comprised a network regulating the activity of leukocytes, especially neutrophils, during mammary gland inflammation. The timely and properly controlled movement of leukocytes to infection loci seems particularly important in achieving a good balance between pathogen elimination and excessive tissue damage. These results suggest that polymorphisms in key genes in these pathways such as SELP, SELL, BCAR1, ACTR3, CXCL2, CXCL6, CXCL8 and FABP may influence the ability of dairy cows to resist mastitis
The Phylogeography of Rabies in Grenada, West Indies, and Implications for Control
In Grenada, West Indies, rabies is endemic, and is thought to be maintained in a wildlife host, the small Indian mongoose (Herpestes auropunctatus) with occasional spillover into other hosts. Therefore, the present study was undertaken to improve understanding of rabies epidemiology in Grenada and to inform rabies control policy. Mongooses were trapped island-wide between April 2011 and March 2013 and examined for the presence of Rabies virus (RABV) antigen using the direct fluorescent antibody test (dFAT) and PCR, and for serum neutralizing antibodies (SNA) using the fluorescent antibody virus neutralization test (FAVN). An additional cohort of brain samples from clinical rabies suspects submitted between April 2011 and March 2014 were also investigated for the presence of virus. Two of the 171 (1.7%) live-trapped mongooses were RABV positive by FAT and PCR, and 20 (11.7%) had SNAs. Rabies was diagnosed in 31 of the submitted animals with suspicious clinical signs: 16 mongooses, 12 dogs, 2 cats and 1 goat. Our investigation has revealed that rabies infection spread from the northeast to the southwest of Grenada within the study period. Phylogenetic analysis revealed that the viruses from Grenada formed a monophyletic clade within the cosmopolitan lineage with a common ancestor predicted to have occurred recently (6–23 years ago), and are distinct from those found in Cuba and Puerto Rico, where mongoose rabies is also endemic. These data suggest that it is likely that this specific strain of RABV was imported from European regions rather than the Americas. These data contribute essential information for any potential rabies control program in Grenada and demonstrate the importance of a sound evidence base for planning interventions
Adaptive evolution of Toll-like receptor 5 in domesticated mammals
<p>Abstract</p> <p>Background</p> <p>Previous studies have proposed that mammalian toll like receptors (TLRs) have evolved under diversifying selection due to their role in pathogen detection. To determine if this is the case, we examined the extent of adaptive evolution in the TLR5 gene in both individual species and defined clades of the mammalia.</p> <p>Results</p> <p>In support of previous studies, we find evidence of adaptive evolution of mammalian TLR5. However, we also show that TLR5 genes of domestic livestock have a concentration of single nucleotide polymorphisms suggesting a specific signature of adaptation. Using codon models of evolution we have identified a concentration of rapidly evolving codons within the TLR5 extracellular domain a site of interaction between host and the bacterial surface protein flagellin.</p> <p>Conclusions</p> <p>The results suggest that interactions between pathogen and host may be driving adaptive change in TLR5 by competition between species. In support of this, we have identified single nucleotide polymorphisms (SNP) in sheep and cattle TLR5 genes that are co-localised and co-incident with the predicted adaptive codons suggesting that adaptation in this region of the TLR5 gene is on-going in domestic species.</p
Critical function of AP-2gamma/TCFAP2C in mouse embryonic germ cell maintenance
Formation of the germ cell lineage involves multiple processes, including repression of somatic differentiation and reacquisition of pluripotency as well as a unique epigenetic constitution. The transcriptional regulator Prdm1 has been identified as a main coordinator of this process, controlling epigenetic modification and gene expression. Here we report on the expression pattern of the transcription factor Tcfap2c, a putative downstream target of Prdm1, during normal mouse embryogenesis and the consequences of its specific loss in primordial germ cells (PGCs) and their derivatives. Tcfap2c is expressed in PGCs from Embryonic Day 7.25 (E 7.25) up to E 12.5, and targeted disruption resulted in sterile animals, both male and female. In the mutant animals, PGCs were specified but were lost around E 8.0. PGCs generated in vitro from embryonic stem cells lacking TCFAP2C displayed induction of Prdm1 and Dppa3. Upregulation of Hoxa1, Hoxb1, and T together with lack of expression of germ cell markers such Nanos3, Dazl, and Mutyh suggested that the somatic gene program is induced in TCFAP2C-deficient PGCs. Repression of TCFAP2C in TCam-2, a human PGC-resembling seminoma cell line, resulted in specific upregulation of HOXA1, HOXB1, MYOD1, and HAND1, indicative of mesodermal differentiation. Expression of genes indicative of ectodermal, endodermal, or extraembryonic differentiation, as well as the finding of no change to epigenetic modifications, suggested control by other factors. Our results implicate Tcfap2c as an important effector of Prdml activity that is required for PGC maintenance, most likely mediating Prdm1-induced suppression of mesodermal differentiation
Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages
This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments
TGF-b2 induction regulates invasiveness of theileria-transformed leukocytes and disease susceptibility
Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence
Poultry Coccidiosis: Design and Interpretation of Vaccine Studies
Eimeria infection impacts upon chicken welfare and economic productivity of the poultry sector. Live coccidiosis vaccines for chickens have been available for almost 70 years, but the requirement to formulate blends of oocysts from multiple Eimeria species makes vaccine production costly and logistically demanding. A multivalent vaccine that does not require chickens for its production and can induce protection against multiple Eimeria species is highly desirable. However, despite the identification and testing of many vaccine candidate antigens, no recombinant coccidiosis vaccine has been developed commercially. Currently, assessment of vaccine efficacy against Eimeria, and the disease coccidiosis, can be done only through in vivo vaccination and challenge experiments but the design of such studies has been highly variable. Lack of a “standard” protocol for assessing vaccine efficacy makes comparative evaluations very difficult, complicating vaccine development, and validation. The formulation and schedule of vaccination, the breed of chicken and choice of husbandry system, the species, strain, magnitude, and timing of delivery of the parasite challenge, and the parameters used to assess vaccine efficacy all influence the outcomes of experimental trials. In natural Eimeria infections, the induction of strong cell mediated immune responses are central to the development of protective immunity against coccidiosis. Antibodies are generally regarded to be of lesser importance. Unfortunately, there are no specific immunological assays that can accurately predict how well a vaccine will protect against coccidiosis (i.e., no “correlates of protection”). Thus, experimental vaccine studies rely on assessing a variety of post-challenge parameters, including assessment of pathognomonic lesions, measurements of parasite replication such as oocyst output or quantification of Eimeria genomes, and/or measurements of productivity such as body weight gain and feed conversion rates. Understanding immune responses to primary and secondary infection can inform on the most appropriate immunological assays. The discovery of new antigens for different Eimeria species and the development of new methods of vaccine antigen delivery necessitates a more considered approach to assessment of novel vaccines with robust, repeatable study design. Careful consideration of performance and welfare factors that are genuinely relevant to chicken producers and vaccine manufacturers is essential
- …
