1,929 research outputs found
Quantum-state extraction from high-Q cavities
The problem of extraction of a single-mode quantum state from a high-Q cavity
is studied for the case in which the time of preparation of the quantum state
of the cavity mode is short compared with its decay time. The temporal
evolution of the quantum state of the field escaping from the cavity is
calculated in terms of phase-space functions. A general condition is derived
under which the quantum state of the pulse built up outside the cavity is a
nearly perfect copy of the quantum state the cavity field was initially
prepared in. The results show that unwanted losses prevent the realization of a
nearly perfect extraction of nonclassical quantum states from high-Q optical
microcavities with presently available technology.Comment: RevTeX4, 9 pages with 6 figures; extended version as submitted to
Phys. Rev.
Determination of quantum-noise parameters of realistic cavities
A procedure is developed which allows one to measure all the parameters
occurring in a complete model [A.A. Semenov et al., Phys. Rev. A 74, 033803
(2006); quant-ph/0603043] of realistic leaky cavities with unwanted noise. The
method is based on the reflection of properly chosen test pulses by the cavity.Comment: 5 pages, 2 figure
Nonclassical Moments and their Measurement
Practically applicable criteria for the nonclassicality of quantum states are
formulated in terms of different types of moments. For this purpose the moments
of the creation and annihilation operators, of two quadratures, and of a
quadrature and the photon number operator turn out to be useful. It is shown
that all the required moments can be determined by homodyne correlation
measurements. An example of a nonclassical effect that is easily characterized
by our methods is amplitude-squared squeezing.Comment: 12 pages, 6 figure
Conditional quantum-state transformation at a beam splitter
Using conditional measurement on a beam splitter, we study the transformation
of the quantum state of the signal mode within the concept of two-port
non-unitary transformation. Allowing for arbitrary quantum states of both the
input reference mode and the output reference mode on which the measurement is
performed, we show that the non-unitary transformation operator can be given as
an -ordered operator product, where the value of is entirely determined
by the absolute value of the beam splitter reflectance (or transmittance). The
formalism generalizes previously obtained results that can be recovered by
simple specification of the non-unitary transformation operator. As an
application, we consider the generation of Schr\"odinger-cat-like states. An
extension to mixed states and imperfect detection is outlined.Comment: 7 Postscript figures, using Late
Collider design issues based on proton-driven plasma wakefield acceleration
Recent simulations have shown that a high-energy proton bunch can excite
strong plasma wakefields and accelerate a bunch of electrons to the energy
frontier in a single stage of acceleration. It therefore paves the way towards
a compact future collider design using the proton beams from existing
high-energy proton machines, e.g. Tevatron or the LHC. This paper addresses
some key issues in designing a compact electron-positron linear collider and an
electron-proton collider based on existing CERN accelerator infrastructure
An collider based on proton-driven plasma wakefield acceleration
Recent simulations have shown that a high-energy proton bunch can excite
strong plasma wakefields and accelerate a bunch of electrons to the energy
frontier in a single stage of acceleration. This scheme could lead to a future
collider using the LHC for the proton beam and a compact electron
accelerator of length 170 m, producing electrons of energy up to 100 GeV. The
parameters of such a collider are discussed as well as conceptual layouts
within the CERN accelerator complex. The physics of plasma wakefield
acceleration will also be introduced, with the AWAKE experiment, a proof of
principle demonstration of proton-driven plasma wakefield acceleration, briefly
reviewed, as well as the physics possibilities of such an collider.Comment: 6 pages, 2 figures, to appear in the proceedings of the DIS 2014
Workshop, 28 April - 2 May, Warsaw, Polan
True photo-counting statistics of multiple on-off detectors
We derive a closed photo-counting formula, including noise counts and a
finite quantum efficiency, for photon number resolving detectors based on
on-off detectors. It applies to detection schemes such as array detectors and
multiplexing setups. The result renders it possible to compare the
corresponding measured counting statistics with the true photon number
statistics of arbitrary quantum states. The photo-counting formula is applied
to the discrimination of photon numbers of Fock states, squeezed states, and
odd coherent states. It is illustrated for coherent states that our formula is
indispensable for the correct interpretation of quantum effects observed with
such devices.Comment: 7 pages, 4 figure
Fatigue crack layer propagation in silicon-iron
Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution
- …