33,366 research outputs found
Ground state energy of a homogeneous Bose-Einstein condensate beyond Bogoliubov
The standard calculations of the ground-state energy of a homogeneous Bose
gas rely on approximations which are physically reasonable but difficult to
control. Lieb and Yngvason [Phys. Rev. Lett. 80, 2504 (1998)] have proved
rigorously that the commonly accepted leading order term of the ground state
energy is correct in the zero-density-limit. Here, strong indications are given
that also the next to leading term is correct. It is shown that the first terms
obtained in a perturbative treatment provide contributions which are lost in
the Bogoliubov approach.Comment: 6 pages, accepted for publication in Europhys. Lett.
http://www.epletters.ch
Weak Localization and Transport Gap in Graphene Antidot Lattices
We fabricated and measured antidot lattices in single layer graphene with
lattice periods down to 90 nm. In large-period lattices, a well-defined quantum
Hall effect is observed. Going to smaller antidot spacings the quantum Hall
effect gradually disappears, following a geometric size effect. Lattices with
narrow constrictions between the antidots behave as networks of nanoribbons,
showing a high-resistance state and a transport gap of a few mV around the
Dirac point. We observe pronounced weak localization in the magnetoresistance,
indicating strong intervalley scattering at the antidot edges. The area of
phase-coherent paths is bounded by the unit cell size at low temperatures, so
each unit cell of the lattice acts as a ballistic cavity.Comment: some revisions, to appear in New Journal of Physics, Special Issue
Graphen
Spatial Resonator Solitons
Spatial solitons can exist in various kinds of nonlinear optical resonators
with and without amplification. In the past years different types of these
localized structures such as vortices, bright, dark solitons and phase solitons
have been experimentally shown to exist. Many links appear to exist to fields
different from optics, such as fluids, phase transitions or particle physics.
These spatial resonator solitons are bistable and due to their mobility suggest
schemes of information processing not possible with the fixed bistable elements
forming the basic ingredient of traditional electronic processing. The recent
demonstration of existence and manipulation of spatial solitons in emiconductor
microresonators represents a step in the direction of such optical parallel
processing applications. We review pattern formation and solitons in a general
context, show some proof of principle soliton experiments on slow systems, and
describe in more detail the experiments on semiconductor resonator solitons
which are aimed at applications.Comment: 15 pages, 32 figure
Light scattering from a periodically modulated two dimensional electron gas with partially filled Landau levels
We study light scattering from a periodically modulated two dimensional
electron gas in a perpendicular magnetic field. If a subband is partially
filled, the imaginary part of the dielectric function as a function of
frequency contains additional discontinuities to the case of completely filled
subbands. The positions of the discontinuities may be determined from the
partial filling factor and the height of the discontinuity can be directly
related to the modulation potential. The light scattering cross section
contains a new peak which is absent for integer filling.Comment: RevTex, 4 figures. To appear in Phys. Rev. B as a brief repor
Phase space dynamics of overdamped quantum systems
The phase space dynamics of dissipative quantum systems in strongly condensed
phase is considered. Based on the exact path integral approach it is shown that
the Wigner transform of the reduced density matrix obeys a time evolution
equation of Fokker-Planck type valid from high down to very low temperatures.
The effect of quantum fluctuations is discussed and the accuracy of these
findings is tested against exact data for a harmonic system.Comment: 7 pages, 2 figures, to appear in Euro. Phys. Let
Scanning Raman spectroscopy of graphene antidot lattices: Evidence for systematic p-type doping
We have investigated antidot lattices, which were prepared on exfoliated
graphene single layers via electron-beam lithography and ion etching, by means
of scanning Raman spectroscopy. The peak positions, peak widths and intensities
of the characteristic phonon modes of the carbon lattice have been studied
systematically in a series of samples. In the patterned samples, we found a
systematic stiffening of the G band mode, accompanied by a line narrowing,
while the 2D mode energies are found to be linearly correlated with the G mode
energies. We interpret this as evidence for p-type doping of the nanostructured
graphene
Decoherence in a system of many two--level atoms
I show that the decoherence in a system of degenerate two--level atoms
interacting with a bosonic heat bath is for any number of atoms governed by
a generalized Hamming distance (called ``decoherence metric'') between the
superposed quantum states, with a time--dependent metric tensor that is
specific for the heat bath.The decoherence metric allows for the complete
characterization of the decoherence of all possible superpositions of
many-particle states, and can be applied to minimize the over-all decoherence
in a quantum memory. For qubits which are far apart, the decoherence is given
by a function describing single-qubit decoherence times the standard Hamming
distance. I apply the theory to cold atoms in an optical lattice interacting
with black body radiation.Comment: replaced with published versio
Skipping orbits and enhanced resistivity in large-diameter InAs/GaSb antidot lattices
We investigated the magnetotransport properties of high-mobility InAs/GaSb
antidot lattices. In addition to the usual commensurability features at low
magnetic field we found a broad maximum of classical origin around 2.5 T. The
latter can be ascribed to a class of rosetta type orbits encircling a single
antidot. This is shown by both a simple transport calculation based on a
classical Kubo formula and an analysis of the Poincare surface of section at
different magnetic field values. At low temperatures we observe weak
1/B-periodic oscillations superimposed on the classical maximum.Comment: 4 pages, 4 Postscript figures, REVTeX, submitted to Phys Rev
Investigation of the free flow electrophoretic process
The effects of gravity on the free flow electrophoretic process was demonstrated. The free flow electrophoresis chamber used to demonstrate the effects of gravity on the process was of a proprietary design. This chamber was 120 cm long, 16 cm wide, and 0.15 cm thick. Flow in this chamber was in the upward direction and exited through 197 outlets at the top of the chamber. During electrophoresis a stream of sample was injected into the flow near the bottom of the chamber and an electrical field was applied across the width of the chamber. The field caused a lateral force on particles in the sample proportional to the inherent change of the particle and the electric field strength. Particle lateral velocity was then dependent on the force due to viscous drag which was proportional to particle size and particle shape dependent
- …