5,367 research outputs found

    Comparison of 3-D viscous flow computations of Mach 5 inlet with experimental data

    Get PDF
    A time marching 3-D full Navier-Stokes code, called PARC3D, is validated for an experimental Mach 5 inlet configuration using the data obtained in the 10 x 10 ft supersonic wind tunnel at the NASA Lewis Research Center. For the first time, a solution is obtained for this configuration with the actual geometry, the tunnel conditions, and all the bleed zones modeled in the computation. Pitot pressure profiles and static pressures at various locations in the inlet are compared with the corresponding experimental data. The effect of bleed zones, located in different places on the inlet walls, in eliminating the low energy vortical flow generated from the 3-D shock-boundary layer interaction is simulated very well even though some approximations are used in applying the bleed boundary conditions and in the turbulence model. A further detailed study of the effect of individual bleed ports is needed to understand fully the actual mechanism of efficiently eliminating the vortical flow from the inlet. A better turbulence model would help to improve the accuracy even further in predicting the corner flow boundary layer profiles

    Flying Drosophila maintain arbitrary but stable headings relative to the angle of polarized light

    Get PDF
    Animals must use external cues to maintain a straight course over long distances. In this study, we investigated how the fruit fly Drosophila melanogaster selects and maintains a flight heading relative to the axis of linearly polarized light, a visual cue produced by the atmospheric scattering of sunlight. To track flies' headings over extended periods, we used a flight simulator that coupled the angular velocity of dorsally presented polarized light to the stroke amplitude difference of the animals’ wings. In the simulator, most flies actively maintained a stable heading relative to the axis of polarized light for the duration of 15 min flights. We found that individuals selected arbitrary, unpredictable headings relative to the polarization axis, which demonstrates that D. melanogaster can perform proportional navigation using a polarized light pattern. When flies flew in two consecutive bouts separated by a 5 min gap, the two flight headings were correlated, suggesting individuals retain a memory of their chosen heading. We found that adding a polarized light pattern to a light intensity gradient enhanced flies' orientation ability, suggesting D. melanogaster use a combination of cues to navigate. For both polarized light and intensity cues, flies' capacity to maintain a stable heading gradually increased over several minutes from the onset of flight. Our findings are consistent with a model in which each individual initially orients haphazardly but then settles on a heading which is maintained via a self-reinforcing process. This may be a general dispersal strategy for animals with no target destination

    Defect formation in superconducting rings: external fields and finite-size effects

    Full text link
    Consistent with the predictions of Kibble and Zurek, scaling behaviour has been seen in the production of fluxoids during temperature quenches of superconducting rings. However, deviations from the canonical behaviour arise because of finite-size effects and stray external fields. Technical developments, including laser heating and the use of long Josephson tunnel junctions, have improved the quality of data that can be obtained. With new experiments in mind we perform large-scale 3D simulations of quenches of small, thin rings of various geometries with fully dynamical electromagnetic fields, at nonzero externally applied magnetic flux. We find that the outcomes are, in practice, indistinguishable from those of much simpler Gaussian analytical approximations in which the rings are treated as one-dimensional systems and the magnetic field fluctuation-free.Comment: 10 pages, 3 figures, presentation at QFS2012, to appear in JLT

    Progress in Atmospheric Carbon Monitoring Using NASA's GEOS Model and Data from the OCO and GOSAT Missions

    Get PDF
    NASA's Global Modeling and Assimilation Office (GMAO) produces a variety of carbon products based the synthesis of satellite remote sensing data and outputs of the Goddard Earth Observing System (GEOS). This includes bottom-up surface fluxes due to fossil fuel emissions, biomass burning, terrestrial biospheric exchange, and ocean exchangeconstrained by measurements of nighttime lights, fire radiative power, normalized difference vegetation index, and ocean color. These fluxes are the basis of top-down estimates of carbon concentrations and fluxes. In particular, the GMAO system processes retrievals of column carbon dioxide (XCO2) from GOSAT and OCO-2 to produce a high-resolution, long-term global analysis of CO2 in three dimensions every 6 hours. Here, we discuss the potential applications of such products for satellite intercomparison and evaluation against independent, non-coincident data. We also highlight the ability to provide monthly global atmospheric growth rates inferred from the assimilated CO2 concentration product. Finally, we discuss the challenges facing such products including bias correction and the estimation and analysis of model transport errors

    Genomic islands of divergence in the Yellow Tang and the Brushtail Tang Surgeonfishes.

    Get PDF
    The current ease of obtaining thousands of molecular markers challenges the notion that full phylogenetic concordance, as proposed by phylogenetic species concepts, is a requirement for defining species delimitations. Indeed, the presence of genomic islands of divergence, which may be the cause, or in some cases the consequence, of speciation, precludes concordance. Here, we explore this issue using thousands of RAD markers on two sister species of surgeonfishes (Teleostei: Acanthuridae), Zebrasoma flavescens and Z. scopas, and several populations within each species. Species are readily distinguished based on their colors (solid yellow and solid brown, respectively), yet populations and species are neither distinguishable using mitochondrial markers (cytochrome c oxidase 1), nor using 5193 SNPs (pairwise Φst = 0.034). In contrast, when using outlier loci, some of them presumably under selection, species delimitations, and strong population structure follow recognized taxonomic positions (pairwise Φst = 0.326). Species and population delimitation differences based on neutral and selected markers are likely due to local adaptation, thus being consistent with the idea that these genomic islands of divergence arose as a consequence of isolation. These findings, which are not unique, raise the question of a potentially important pathway of divergence based on local adaptation that is only evident when looking at thousands of loci
    • …
    corecore