2,470 research outputs found

    Pockels-effect cell for gas-flow simulation

    Get PDF
    A Pockels effect cell using a 75 cu cm DK*P crystal was developed and used as a gas flow simulator. Index of refraction gradients were produced in the cell by the fringing fields of parallel plate electrodes. Calibration curves for the device were obtained for index of refraction gradients in excess of .00025 m

    In situ measurement of the dynamic structure factor in ultracold quantum gases

    Full text link
    We propose an experimental setup to efficiently measure the dynamic structure factor of ultracold quantum gases. Our method uses the interaction of the trapped atomic system with two different cavity modes, which are driven by external laser fields. By measuring the output fields of the cavity the dynamic structure factor of the atomic system can be determined. Contrary to previous approaches the atomic system is not destroyed during the measurement process.Comment: 5 pages, 3 figure

    Long-range quantum gates using dipolar crystals

    Get PDF
    We propose the use of dipolar spin chains to enable long-range quantum logic between distant qubits. In our approach, an effective interaction between remote qubits is achieved by adiabatically following the ground state of the dipolar chain across the paramagnet to crystal phase transition. We demonstrate that the proposed quantum gate is particularly robust against disorder and derive scaling relations, showing that high-fidelity qubit coupling is possible in the presence of realistic imperfections. Possible experimental implementations in systems ranging from ultracold Rydberg atoms to arrays of Nitrogen-Vacancy defect centers in diamond are discussed.Comment: 5 pages, 3 figure

    Scanning tunneling microscopy investigation of 2H-MoS_2: A layered semiconducting transition‐metal dichalcogenide

    Get PDF
    Scanning tunneling microscopy (STM) has been enormously successful in solving several important problems in the geometric and electronic structure of homogeneous metallic and semiconducting surfaces. A central question which remains to be answered with respect to the study of compound surfaces, however, is the extent to which the chemical identity of constituent atoms may be established. Recently, progress in this area was made by Feenstra et al. who succeeded in selectively imaging either Ga or As atoms on the GaAs (110) surface. So far this is the only case where such selectivity has been achieved. In an effort to add to our understanding of compound surface imaging we have undertaken a vacuum STM study of 2H-MoS_2, a material which has two structurally and electronically different atomic species at its surface

    Geologic and mineral and water resources investigations in western Colorado, using Skylab EREP data

    Get PDF
    The author has identified the following significant results. Skylab photographs are superior to ERTS images for photogeologic interpretation, primarily because of improved resolution. Lithologic contacts can be detected consistently better on Skylab S190A photos than on ERTS images. Color photos are best; red and green band photos are somewhat better than color-infrared photos; infrared band photos are worst. All major geologic structures can be recognized on Skylab imagery. Large folds, even those with very gentle flexures, can be mapped accurately and with confidence. Bedding attitudes of only a few degrees are recognized; vertical exaggeration factor is about 2.5X. Mineral deposits in central Colorado may be indicated on Skylab photos by lineaments and color anomalies, but positive identification of these features is not possible. S190A stereo color photography is adequate for defining drainage divides that in turn define the boundaries and distribution of ground water recharge and discharge areas within a basin

    Neural Attentive Session-based Recommendation

    Full text link
    Given e-commerce scenarios that user profiles are invisible, session-based recommendation is proposed to generate recommendation results from short sessions. Previous work only considers the user's sequential behavior in the current session, whereas the user's main purpose in the current session is not emphasized. In this paper, we propose a novel neural networks framework, i.e., Neural Attentive Recommendation Machine (NARM), to tackle this problem. Specifically, we explore a hybrid encoder with an attention mechanism to model the user's sequential behavior and capture the user's main purpose in the current session, which are combined as a unified session representation later. We then compute the recommendation scores for each candidate item with a bi-linear matching scheme based on this unified session representation. We train NARM by jointly learning the item and session representations as well as their matchings. We carried out extensive experiments on two benchmark datasets. Our experimental results show that NARM outperforms state-of-the-art baselines on both datasets. Furthermore, we also find that NARM achieves a significant improvement on long sessions, which demonstrates its advantages in modeling the user's sequential behavior and main purpose simultaneously.Comment: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. arXiv admin note: text overlap with arXiv:1511.06939, arXiv:1606.08117 by other author

    Quantitative maps of geomagnetic perturbation vectors during substorm onset and recovery

    Full text link
    We have produced the first series of spherical harmonic, numerical maps of the time‐dependent surface perturbations in the Earth's magnetic field following the onset of substorms. Data from 124 ground magnetometer stations in the Northern Hemisphere at geomagnetic latitudes above 33° were used. Ground station data averaged over 5 min intervals covering 8 years (1998–2005) were used to construct pseudo auroral upper, auroral lower, and auroral electrojet (AU*, AL*, and AE*) indices. These indices were used to generate a list of substorms that extended from 1998 to 2005, through a combination of automated processing and visual checks. Events were sorted by interplanetary magnetic field (IMF) orientation (at the Advanced Composition Explorer (ACE) satellite), dipole tilt angle, and substorm magnitude. Within each category, the events were aligned on substorm onset. A spherical cap harmonic analysis was used to obtain a least error fit of the substorm disturbance patterns at 5 min intervals up to 90 min after onset. The fits obtained at onset time were subtracted from all subsequent fits, for each group of substorm events. Maps of the three vector components of the averaged magnetic perturbations were constructed to show the effects of substorm currents. These maps are produced for several specific ranges of values for the peak |AL*| index, IMF orientation, and dipole tilt angle. We demonstrate an influence of the dipole tilt angle on the response to substorms. Our results indicate that there are downward currents poleward and upward currents just equatorward of the peak in the substorms' westward electrojet.Key PointsShow quantitative maps of ground geomagnetic perturbations due to substormsThree vector components mapped as function of time during onset and recoveryCompare/contrast results for different tilt angle and sign of IMF Y‐componentPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110891/1/jgra51610.pd

    Optical air data systems and methods

    Get PDF
    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip
    corecore