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We propose the use of dipolar spin chains to enable long-range quantum logic between distant qubits. In

our approach, an effective interaction between remote qubits is achieved by adiabatically following the

ground state of the dipolar chain across the paramagnet to crystal phase transition. We demonstrate that

the proposed quantum gate is particularly robust against disorder and derive scaling relations, showing

that high-fidelity qubit coupling is possible in the presence of realistic imperfections. Possible experi-

mental implementations in systems ranging from ultracold Rydberg atoms to arrays of nitrogen vacancy

defect centers in diamond are discussed.

DOI: 10.1103/PhysRevLett.108.100501 PACS numbers: 03.67.Lx, 05.30.Rt, 32.80.Ee, 76.30.Mi

The ability to carry out quantum gates between spatially
remote qubits forms a crucial component of quantum
information processing [1]. Theoretical and experimental
work addressing this challenge has largely been focused
upon using photons [2–4], spin chains [5–8], and other
hybrid systems [9–11] as quantum buses, which mediate
long-range quantum information transfer. In these ap-
proaches, this transfer is achieved by either encoding the
information in a traveling wave packet [2–7], or by cou-
pling the remote qubits to a shared spatially extended mode
[8–11]. In this Letter, we propose a novel approach to this
outstanding problem and demonstrate that adiabatic driv-
ing of a dipolar spin system across a quantum phase
transition can be used to implement a robust controlled-
phase (CP) gate.

Our approach is applicable to dipolar spin systems
[12–17], composed, for example, of ultracold atoms and
molecules, or solid-state spin ensembles, where natural
imperfections invariably lead to disorder. E.g., for spin
qubits associated with nitrogen vacancy (NV) centers in
diamond [18,19], the need for both long-range and
disorder-robust quantum gates is especially evident.
Despite room temperature coherence times of �10 ms,
the weakness of magnetic dipole-dipole interactions limits
NV spacing to�10 nm for effective two-qubit gates. Even
recently demonstrated subwavelength techniques [20] can-
not address individual NV qubits at such small separations.
Moreover, any solid-state quantum bus designed to medi-
ate longer ranged interactions will suffer from positional
disorder due to the difficulty of precise nanoscale
implantation.

Here, we explore a possible solution to creating a quan-
tum bus within a disordered system. The key element
underlying our proposal is a phenomenon discussed in
the context of Rydberg atoms as the blockade effect
[21–24]. The simultaneous driving of two excitations
within length scales shorter than the blockade radius is
forbidden as strong interactions shift the doubly excited

state away from resonance. Hence, within the blockade
radius, the underlying spatial distribution of the sites is
largely irrelevant and the arising many-body ground state
washes over the effects of disorder and can lead to the
formation of crystalline structures [13].
The dynamic crystal formation [13–16] underlying our

protocol is schematically illustrated in Fig. 1. We consider
two qubits A and B, coupled to the ends of a one-
dimensional (1D) quantum bus of two-state atoms with
one electronic ground state and one Rydberg state. The
quantum bus is initially prepared in its ground state,
containing no Rydberg excitations. Then, the bus is adia-
batically driven into the crystal regime. The resulting
many-body state has an energy which depends on the
boundary conditions set by the state of the qubits.
Intuitively, this dependence results from a compression
of the crystal, and hence, a decrease in the distance be-
tween two Rydberg excitations aR when the boundary
qubits are not excited. Under free evolution, this energy
difference is translated into a phase difference, which
entangles the qubits. After reversing the adiabatic step,
the quantum bus returns to its initial state while the qubits
remain entangled.
To be specific, we consider an ensemble of strongly

interacting two-state systems described by the Hamiltonian

H ¼ � @�

2

X
i

�z
i þ

@�

2

X
i

�x
i þ

X
i<j

Cp

jri � rjjp P
"
iP

"
j; (1)

where � represents the detuning, � is the Rabi frequency
and p ¼ 3 for dipolar interactions or p ¼ 6 for van der
Waals interactions. The interaction strength is character-
ized by the coefficient Cp and involves projectors onto one

of the states, P"
i ¼ j "ih" j ¼ ð1þ �z

i Þ=2. As we will dis-
cuss further below, the same Hamiltonian also applies to
NV centers under appropriate driving. Here, the electronic
ground state is a spin triplet; thus, the ms ¼ 0 state corre-
sponds to the atomic ground state, while the ms ¼ 1 state,
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which possesses a magnetic dipole moment, corresponds to
the excited Rydberg state [18,19,25,26].

An analogous Hamiltonian governs the interactions be-
tween the boundary qubits (A, B) and the quantum bus,

Hint ¼
X
i

Cp

jrA � rijp P
"
AP

"
i þ

Cp

jrB � rijp P
"
BP

"
i: (2)

Since the interaction conserves �z
A and �z

B, any entangling

operation between the qubits will be in the form of a CP

gate. We may drive the quantum bus independently of the
qubits by ensuring that the resonant splitting of the qubits
differs from that of the mediating bus; possible implemen-
tations will be discussed later.

To derive general scaling properties, we now consider a
one-dimensional system containing N two-state spins

within length L. The CP gate protocol consists of an adia-
batic ramp from the classical ground state into the crystal
regime for time t0, hold for phase accumulation for time t�
and reverse ramp (another t0), resulting in a total gate time
tg ¼ 2t0 þ t�. There are three factors which influence the

asymptotic scaling of the fidelity with system size: (i) the
strength of the effective interaction Eint at the hold point,
(ii) the minimum energy gap �g (across ramp and qubit

sectors) protecting the adiabatic evolution, and (iii) the
strength of external decoherence mechanisms. The inter-
action energy between the qubits, which governs the time
scale of entanglement generation, is

Eint ¼ E"" � E"# � E#" þ E##; (3)

where E�� refers to the energy of the many-body state with

the qubits in state j�iAj�iB (Fig. 1). Within the continuum
limit of a classical crystal, Eint � d2=L for d � aR, where
d is the distance between the qubits and the ends of the
quantum bus. Owing to quantum fluctuations, the classical
crystal cannot be the true ground state, and the system is
rather described in terms of a Luttinger liquid [27,28].
However, such corrections are important only in the limit
of very large system sizes (N � 109 for typical parame-
ters), where they lead to an algebraic decay of the corre-
lation functions [27].
To analyze the effects of a finite gap and decoherence,

we consider the contributions of each to the overall error of
the controlled phase gate, assuming they occur indepen-
dently [29]. While, in the thermodynamic limit, the gap
vanishes at the phase transition, here, we consider finite
system sizes where there always exists a nonzero gap. For
gapless phases such as the dipolar crystal, however, it is
important to note that the gap may further decrease upon
entering the ordered phase. The qualitative effect of such a
finite gap is described within a Landau-Zener framework.
Optimizing the form of the Landau-Zener sweep by intro-
ducing a nonlinearity results in an improved error scaling
with "LZ ¼ expð�c�Gt0=@Þ, where c is a model-
dependent numerical constant [30,31]. In the case of the
dipolar crystal, �G � 1=L, due to the phononic nature of
the excitations [27,28]; this results in an error which scales
according to the theoretical optimum given by the Lieb-
Robinson bound for the speed of information transfer [32].
Next, we consider the effects of decoherence, noting that

the induced error is a monotonically increasing function
dependent only on the product of the decoherence rate �
and the total gate time tg. In particular, we assume, "d ¼
1� exp½�ð�tgÞ�� � ð�tgÞ�, where � depends on the

physical details of the decoherence process [33]. The
highly entangled nature of the various many-body states
depicted in Fig. 1 implies that the effective decoherence
rate must scale with the system size, � ¼ �0

L
L0
, where �0

is the single particle decoherence rate and the length scale
L0. In the dipolar crystal, L0 is approximately given by the
average distance between two excited spins; this is

FIG. 1 (color online). Setup for the proposed gate.
(a) Depending on the state of the qubits A and B, the quantum
bus (atoms shown as black dots) in the crystalline phase will
possess a different ground state, where the distance between two
excitations aR is altered. This intuitively corresponds to a
boundary-condition-dependent compression of the crystal
(a0R < aR). (b) Ground state and first excited state during the
control sequence. Initially, the quantum bus is prepared in the
paramagnet (1). Then, the control parameter � is increased
adiabatically (2), driving the system across the phase transition.
Once in the crystal the system evolves freely and picks up a
phase shift depending on the qubit states (3). After the adiabatic
process is reversed (4), the quantum bus is disentangled from the
qubits (5). The inset shows the phase diagram of the system, with
the dashed line depicting the control profile dependent on the
Rabi frequency �ðtÞ and the detuning �ðtÞ.
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consistent with intuition, as decoherence processes ought
only be relevant at sites where there exists an actual
excitation.

To separate off the explicit system size dependence
within "LZ, we define �0 ¼ cL�G=@. Combining the two
error contributions and conservatively plugging tg > t0
into the form for "LZ, then yields

"T ¼ exp

�
��0

L
tg

�
þ

�
�0

L

L0

tg

�
�
: (4)

By minimizing the total error, we obtain an optimal gate

time, t
opt
g ¼ �L log½L0�0=ðL2�0Þ�=�0, with corresponding

error

"T ¼ L2�

�
�

�0

L0�0

log
L0�0

L2�0

�
�
: (5)

Thus, our protocol exhibits a scaling analogous to a quan-
tum gate based on a microscopic interaction with energy
C2=L

2, which has an error given by " ¼ L2�ð2��0=C2Þ�.
The precise values of �0 and L0 can be derived from
numerical studies, as we will show in the following.

Simulations.—In these numerical simulations, we both
verify our general scaling arguments and demonstrate the
ability to achieve superior gate fidelities in comparison to
bare microscopic interactions. We begin by considering a
chain of N equidistant or uniformly randomly distributed
particles with average interparticle spacing a; the details of
the numerical simulation method are described in [13].
Initially, the qubits are prepared in the state jc iA;B ¼
ðj "iA þ j #iAÞ � ðj "iB þ j #iBÞ=2, while the spin chain is
fully polarized, jc iSC ¼ Q

ij #ii. This initial qubit state
constitutes a worst-case scenario leading to a minimum
value of the fidelity for relevant decoherence models, in-
cluding pure dephasing. Using a different initial state for
the qubits can lead to a significantly higher fidelity. To
drive the system across its phase transition, external control
fields are then varied according to

�ðtÞ ¼ �0sin
2

�
8t=t0

1þ 16t2=t20

�
; (6)

�ðtÞ ¼ �0½1–5 expð�4t=t0Þ�: (7)

Here,�0 is chosen such that the end point of the ramp lies
just within the crystalline phase, see Fig. 1. While the
proposed ramp profile features the requisite nonlinearity,
its details have yet to be optimized; therefore, with optimal
control theory, it may be possible to further enhance the
achievable gate fidelities [34]. At t ¼ t0, the system freely
evolves for a time, t� ¼ �@=Eint, in order to allow the
effective interaction to generate a phase gate between the
qubits. Following this period of free evolution, the adia-
batic ramp is then reversed. In addition to naturally follow-
ing the reversed profile, an alternate implementation can
also be achieved by a complete reversal of Hamiltonian
dynamics upon switching H to -H. The ability to change

the sign of the interaction depends on the physical imple-
mentation; in the case of Rydberg atoms, this can be
achieved by transferring the population from a repulsive
state to an attractive state or by changing an external
electric field [35]. We find that both protocols give nearly
identical results and focus on the latter, as it simplifies the
numerical analysis. Since our procedure implements a
controlled-phase gate up to local rotations, the fidelity of
the proposed gate is then given by the disentanglement

fidelity between the qubits and the chain, FLZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trf�2

ABg
q

,

where �AB is the qubits’ reduced density matrix.
In the absence of decoherence, we expect the errors to

be characterized by a Landau-Zener exponential and
this is indeed revealed by the simulations, as shown in
Fig. 2; the fidelity is well characterized by F ¼
1� b expð�c�Gt0=@Þ, where b and c are numerical fit
parameters. Combining these numerics with the additional
errors associated with decoherence ("d) yields an overall
fidelity,

FT ¼ 1
2½1� be�c�Gt0=@�½1þ e�f�0ðL=L0Þ½2t0þð�@=EintÞ�g��: (8)

Note that for near-perfect gates this expression is equiva-
lent to Eq. (4). As previously discussed, there now exists a
maximum fidelity, which is achieved by an optimal ramp
time t0 that is a function of only the effective interaction
strength Eint and the gap �G.
Crucially, Eq. (8) now allows us to investigate the con-

sequences of a disordered interparticle spacing. For a 1D

dipolar crystal, it is known that the crystal spacing, aR ¼
½	ðpÞðpþ 1ÞCp=��1=p, is essentially independent of the

spacing between individual particles, suggesting that the
crystalline phase may be robust against effects of disorder
[27]. To evaluate the gate fidelity (8), we numerically
determine the gap �G and the interaction energy Eint for
100 different uniformly distributed random configurations

FIG. 2 (color online). Numerical simulation results for the gate
fidelity FLZ due to nonadiabatic transitions depending on the
product of the gap �G and duration of the adiabatic step t0 for
equidistant (N ¼ 34, diamonds) and disordered (N ¼ 15,
crosses) configurations. The gap has been varied by changing
�0 while all other parameters are held fixed. The solid line is an
exponential fit to the data. (p ¼ 3, C3 ¼ 100@�0a

3, �0 ¼
2:3�0, d ¼ 3a).
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for the parameters as in Fig. 2 (b ¼ 0:62, c ¼ 0:32). By

extracting L0 ¼ L=
P

ihP"
ii ¼ 2:0ðC3=�0Þ1=3 from the av-

erage density of excitations and employing Eq. (8), we then
calculate the optimum adiabatic ramp time t0 and hence,
the maximum gate fidelity. The result is shown in Fig. 3.
Significantly, even in the presence of disorder, the fidelity
of our phase gate is higher than that which can be achieved
via microscopic dipolar interactions.

Experimental realization.—In the case of Rydberg
atoms, it is possible to achieve independent addressing of
the boundary qubits by choosing differing hyperfine levels
for the qubit and quantum bus atoms. Our proposed pro-
tocol can be realized through either van der Waals inter-
actions (p ¼ 6) between S states or through dipolar
interactions (p ¼ 3) between states within an electric-field
induced Stark fan [36]. Let us focus on the latter case and
consider a Rydberg state with principle quantum number
n ¼ 43 and decoherence rate �0 ¼ 10 kHz (� ¼ 1), ne-
glecting the effects of atomic motion, which is well justi-
fied at temperatures on the order of 100 nK. In order to
achieve a gate fidelity, F ¼ 0:9, the requisite laser parame-
ters are given by �0 ¼ 2�� 8 MHz, �0¼2��17MHz,
and the corresponding interaction strength is given by
C3a

�3 ¼ 2�� 800 MHz. Such an interaction strength
can be achieved in a Rydberg atom cloud with an average
interparticle spacing of a � 1 
m, leading to L � 40 
m;
we note that these parameters are compatible with present
experimental techniques [37]. For van der Waals interac-
tions, the enhancement of the phase gate fidelity is even
more pronounced.

It is also possible to implement our protocol using a
solid-state room temperature setup based upon NV defect
centers in NV diamond [18,19]. To realize the Hamiltonian
(1) using a quasi-1D chain of NV centers [38–40], we work

with the ms ¼ 0, 1 electronic spin states with crystal field
splitting � 2:8 GHz. Independent addressing of the qubits
and quantum bus can be achieved by using a different
nitrogen isotope (15N) for the qubits and the bus (14N);
the hyperfine coupling between the NVelectronic spin and
the nitrogen nuclear spin is isotope dependent, with
AN15
k � 3:03 MHz and AN14

k � �2:14 MHz [41]. This dif-

ference ensures that the microwave driving of the quantum
bus is off resonant with the qubit splitting, allowing for
independent initialization and control. Alternatively, the
boundary qubits may be taken as bare nitrogen impurities
manipulated by a nearby NV center. The nitrogen electron
spin functions as the boundary spin for the protocol and
features resonance frequencies detuned by gigahertz,
which potentially allows for stronger driving during the
gate procedure.
While recent experiments have demonstrated optical

initialization of the ms ¼ 0 state with approximately
92%–95% fidelity, it may be possible to further enhance
this initialization by exploiting the neutral NV0 charge
state. In particular, recent work [42] has shown that red
laser excitation can transfer nearly 100% of the population
to one ms sublevel of the spin-1=2 NV0 electronic spin.
This enables us to effectively polarize the NV nuclear spins
of the chain via cycles of microwave and red laser driving.
Finally, after returning the defect to the NV� charge state,
a SWAP gate transfers the polarization from the nuclear
spins back to the spin-1 electronic spins of the NV�.
Such enhanced initialization may prove beneficial for other
NV-based quantum computing architectures [26].
Magnetic field fluctuations (e.g., from a nuclear spin

bath), which give rise to T�
2 dephasing processes can

effectively be suppressed by stroboscopically switching
the system between the ms ¼ 	1 states. In the resulting
dynamics, the electronic spin is then decoupled from the
environment and coherence times up to the spin relaxation
time T1 can be achieved [43]. This procedure also leads to
the suppression of undesired flip-flop couplings between
the NV centers. Assuming �0 ¼ 100 Hz [44], a Rabi
frequency �0 ¼ 2�� 62 kHz, a detuning �0 ¼
2�� 130 kHz, and an average NV spacing of a ¼ 2 nm,
according to the results shown in Fig. 3, we can achieve
gate times tg � 500 
s and fidelities of F ¼ 0:98 in the

equidistant case, and F ¼ 0:93	 0:04 for disordered con-
figurations over a distance of L ¼ 74 nm. We stress that
such qubit distances are compatible with the individual
optical addressing and readout of NV qubits using experi-
mentally demonstrated subwavelength techniques [20,45].
In summary, we have shown that a robust long-range

quantum gate can be created using dipolar spin chains. We
have discussed possible experimental realizations with
Rydberg atoms or NV centers and emphasize that the
proposed long-range gate can tolerate disorder. At the
same time, the proposed gate is not limited to the case
of dipolar crystals; indeed, one can implement our

FIG. 3 (color online). Dependence of the maximum fidelity of
the proposed quantum gate on the single particle decoherence
rate �0 with parameters taken from the numerical simulation for
a system size of L and a spin-echo suppressed decoherence rate
with � � 3. The solid red line is the fidelity in the equidistant
case with N ¼ 34 particles, while the shaded areas correspond to
90% confidence intervals for a disordered situation (N ¼ 51).
The dashed line indicates the fidelity that can be achieved using
the bare dipolar interaction between the qubits.
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protocol within the transverse Ising model, wherein even a
nearest-neighbor interaction can be used to create an ef-
fective 1=L2 power law interaction. Finally, our proposal is
also a first step towards studying quantum many-body
physics with NV centers.
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