31,091 research outputs found

    Robust Fault Detection of Switched Linear Systems with State Delays

    Get PDF
    This correspondence deals with the problem of robust fault detection for discrete-time switched systems with state delays under an arbitrary switching signal. The fault detection filter is used as the residual generator, in which the filter parameters are dependent on the system mode. Attention is focused on designing the robust fault detection filter such that, for unknown inputs, control inputs, and model uncertainties, the estimation error between the residuals and faults is minimized. The problem of robust fault detection is converted into an H infin-filtering problem. By a switched Lyapunov functional approach, a sufficient condition for the solvability of this problem is established in terms of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of the proposed method

    The second order nonlinear conductance of a two-dimensional mesoscopic conductor

    Full text link
    We have investigated the weakly non-linear quantum transport properties of a two-dimensional quantum conductor. We have developed a numerical scheme which is very general for this purpose. The nonlinear conductance is computed by explicitly evaluating the various partial density of states, the sensitivity and the characteristic potential. Interesting spatial structure of these quantities are revealed. We present detailed results concerning the crossover behavior of the second order nonlinear conductance when the conductor changes from geometrically symmetrical to asymmetrical. Other issues of interests such as the gauge invariance are also discussed.Comment: LaTe

    First-principles calculations of phase transition, elasticity, and thermodynamic properties for TiZr alloy

    Full text link
    tructural transformation, pressure dependent elasticity behaviors, phonon, and thermodynamic properties of the equiatomic TiZr alloy are investigated by using first-principles density-functional theory. Our calculated lattice parameters and equation of state for α\alpha and ω\omega phases as well as the phase transition sequence of α\alpha\mathtt{\rightarrow}ω\omega\mathtt{\rightarrow}β\beta are consistent well with experiments. Elastic constants of α\alpha and ω\omega phases indicate that they are mechanically stable. For cubic β\beta phase, however, it is mechanically unstable at zero pressure and the critical pressure for its mechanical stability is predicted to equal to 2.19 GPa. We find that the moduli, elastic sound velocities, and Debye temperature all increase with pressure for three phases of TiZr alloy. The relatively large B/GB/G values illustrate that the TiZr alloy is rather ductile and its ductility is more predominant than that of element Zr, especially in β\beta phase. Elastic wave velocities and Debye temperature have abrupt increase behaviors upon the α\alpha\mathtt{\rightarrow}ω\omega transition at around 10 GPa and exhibit abrupt decrease feature upon the ω\omega\mathtt{\rightarrow}β\beta transition at higher pressure. Through Mulliken population analysis, we illustrate that the increase of the \emph{d}-band occupancy will stabilize the cubic β\beta phase. Phonon dispersions for three phases of TiZr alloy are firstly presented and the β\beta phase phonons clearly indicate its dynamically unstable nature under ambient condition. Thermodynamics of Gibbs free energy, entropy, and heat capacity are obtained by quasiharmonic approximation and Debye model.Comment: 9 pages, 10 figure

    Design and Implementation of a FPGA and DSP Based MIMO Radar Imaging System

    Get PDF
    The work presented in this paper is aimed at the implementation of a real-time multiple-input multiple-output (MIMO) imaging radar used for area surveillance. In this radar, the equivalent virtual array method and time-division technique are applied to make 16 virtual elements synthesized from the MIMO antenna array. The chirp signal generater is based on a combination of direct digital synthesizer (DDS) and phase locked loop (PLL). A signal conditioning circuit is used to deal with the coupling effect within the array. The signal processing platform is based on an efficient field programmable gates array (FPGA) and digital signal processor (DSP) pipeline where a robust beamforming imaging algorithm is running on. The radar system was evaluated through a real field experiment. Imaging capability and real-time performance shown in the results demonstrate the practical feasibility of the implementation
    corecore