18 research outputs found

    Analyses of temperature and humidity profiles and heat balance of the surface boundary-layer in the hinterland of the Taklimakan Desert

    Get PDF
    The daily variation regularities of micro-meteorological features, such as the surface layer temperature and humidity profiles of the inner desert in summer, the temperature of sand bed, the radiation of the earth's surface and the heat balance, were analyzed by combination method and logarithm regression according to the data obtained from the Atmospheric Environmental Observation Station of Taklimakan Desert in July-August of 2006 and 2007. It has been shown that temperature inversion occurred near the surface layer at night in summer, the temperature increased with the height within a certain altitude range, and the reverse was true during the daytime. The ground surface radiation balance of the Taklimakan Desert was mainly positive; other radiation components (the global radiation, the reflective radiation, the ground upward long wave radiation and the net radiation) exhibited daily variation characteristics evidently and showed normal diurnal cycle, except for the downward atmospheric long-wave radiation. The heat exchange of the surface layer of the desert was dominated by turbulence sensible heat, and only a small portion of heat was transferred to the atmospheric surface layer in the form of latent heat. The surface sensible heat and latent heat changed with the increase and decrease of sun elevation angle, with maximum of the latent heat appearing in wee hours and the peak value of the sensible heat appearing at noon. Observation and analysis showed that heating effect of the underlying surface of the desert was great on the aerosphere; the surface was a high heat source during the day and became a weak cold source at night

    The variation of morphological features and mineralogical components of biological soil crusts in the Gurbantunggut Desert of Northwestern China

    Get PDF
    Increasingly complex life forms were found in older biological soil crusts in the Gurbantaunggut Desert in Northwestern China. These crusts may play a critical role in mineral erosion and desert soil formation by modifying the weathering environment and ultimately affecting mineralogical variance. To test this hypothesis, variations in the morphological features and mineralogical components of successional biological soil crusts at 1 cm were studied by optical microscopy, SEM and grain size analysis. Concentrations of erosion-resistant minerals decreased with crust succession, while minerals susceptible to weathering increased with crust development. Neogenetic minerals were found in late stage crusts, but not in early stage crusts. Silt and clay concentrations were highest in early formation crusts and soil mean particle size decreased with crust succession. Cyanobacteria, lichen and moss were shown to erode and etch rocks, and secondary minerals produced by weathering were localized with the living organisms. Thus, more developed crusts appeared to contribute to greater mineral weathering and may be a major cause of mineralogical variance seen in the Gurbantunggut Desert. The greater activity and complexity of older crusts, as well as their improved moisture condition may function to accelerate mineral weathering. Therefore, protection and recovery of biological crusts is vital for desert soil formation

    Climate warming and decreasing total column ozone over the Tibetan Plateau during winter and spring

    Get PDF
    The long-term trends of the total column ozone (TCO) over the Tibetan Plateau (TP) and factors responsible for the trends are analysed in this study using various observations and a chemistry–climate model (CCM). The results indicate that the total column ozone low (TOL) over the TP during winter and spring is deepening over the recent decade, which is opposite to the recovery signal in annual mean TCO over the TP after mid-1990s. The TOL intensity is increasing at a rate of 1.4 DU/decade and the TOL area is extending with 50,000 km2/decade during winter for the period 1979–2009. The enhanced transport of ozone-poor air into the stratosphere and elevated tropopause due to the rapid and significant warming over the TP during winter reduce ozone concentrations in the upper troposphere and lower stratosphere and hence lead to the deepening of the TOL. Based on the analysis of the multiple regression model, the thermal dynamical processes associated with the TP warming accounts for more than 50% of TCO decline during winter for the period 1979–2009. The solar variations during 1995–2009 further enlarge ozone decreases over the TP in the past decade. According to the CCM simulations, the increases in NOx emissions in East Asia and global tropospheric N2O mixing ratio for the period 1979–2009 contribute to no more than 20% reductions in TCO during this period

    Divergent response of tree-ring width and maximum latewood density of Abies faxoniana to warming trends at the timberline of the western Qinling Mountains and northeastern Tibetan Plateau, China

    Get PDF
    Tree-ring width (TRW) and maximum latewood density (MXD) data of Faxon fir ( Rehd. et Wils.) were analyzed for five timberline sites in the western Qinling Mountains and northeastern Tibetan Plateau, to investigate their relationships to climate change, especially twentieth century warming. The cross-correlations among TRW chronologies at the low-frequency band were higher, while the higher correlations among MXD chronologies were found at the high-frequency band. Response analysis showed that the tree-ring formation of fir trees was significantly and positively affected by temperature variations, while it was also negatively affected by precipitation. The TRW series captured the warming trends and allowed detecting the recent warming in a long-term context, while the MXD series showed no upward trend. We also found the temperature sensitivity of the TRW series is unstable over space and time. The divergent response between TRW and MXD might be caused by the seasonal variations of warming trends.Abies faxonian

    The possible pivotal role of the eastward dust transport from Central Asia in the global temperature decrease

    No full text
    It is generally considered that the occurrence of glacial-interglacial gyrations can be explained with the Milankovitch theory. However, the solutions of some problems in the theory are currently not derived yet. After researching the eastward dust transport from Central Asia, we have found that there is a positive feedback mechanism between the eastward dust transport and the global temperature decrease. This magnifies the effect of solar radiation change in the high-latitude area of the Northern Hemisphere, and results in the occurrence of the global glacial epoch. The positive feedback mechanism starts with the reduction of solar radiation in the high-latitude area of the Northern Hemisphere. Subsequently, the global temperature decreases and global glacial epoch occurs, in which the pivotal factor is the eastward dust transport from Central Asia. With the theory of the positive feedback mechanism, some problems in the Milankovitch theory can be solved well

    Snow hazard regionalization in China

    No full text
    corecore