69 research outputs found

    Competing Activities of Heterotrimeric G Proteins in Drosophila Wing Maturation

    Get PDF
    Drosophila genome encodes six alpha-subunits of heterotrimeric G proteins. The Gαs alpha-subunit is involved in the post-eclosion wing maturation, which consists of the epithelial-mesenchymal transition and cell death, accompanied by unfolding of the pupal wing into the firm adult flight organ. Here we show that another alpha-subunit Gαo can specifically antagonize the Gαs activities by competing for the Gβ13F/Gγ1 subunits of the heterotrimeric Gs protein complex. Loss of Gβ13F, Gγ1, or Gαs, but not any other G protein subunit, results in prevention of post-eclosion cell death and failure of the wing expansion. However, cell death prevention alone is not sufficient to induce the expansion defect, suggesting that the failure of epithelial-mesenchymal transition is key to the folded wing phenotypes. Overactivation of Gαs with cholera toxin mimics expression of constitutively activated Gαs and promotes wing blistering due to precocious cell death. In contrast, co-overexpression of Gβ13F and Gγ1 does not produce wing blistering, revealing the passive role of the Gβγ in the Gαs-mediated activation of apoptosis, but hinting at the possible function of Gβγ in the epithelial-mesenchymal transition. Our results provide a comprehensive functional analysis of the heterotrimeric G protein proteome in the late stages of Drosophila wing development

    Is biotechnology (more) acceptable when it enables a reduction in phytosanitary treatments? A European comparison of the acceptability of transgenesis and cisgenesis

    Get PDF
    Reduced pesticide use is one of the reasons given by Europeans for accepting new genetic engineering techniques. According to the advocates of these techniques, consumers are likely to embrace the application of cisgenesis to apple trees. In order to verify the acceptability of these techniques, we estimate a Bayesian multilevel structural equation model, which takes into account the multidimensional nature of acceptability and individual, national, and European effects, using data from the Eurobarometer 2010 73.1 on science. The results underline the persistence of clear differences between European countries and whilst showing considerable defiance, a relatively wider acceptability of vertical gene transfer as a means of reducing phytosanitary treatments, compared to horizontal transfer

    From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways

    Get PDF
    The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.GB Rogers, DJ Keating, RL Young, M-L Wong, J Licinio, and S Wesseling

    The photolysis of dialkyl sulphides, disulphides, and trisulphides

    No full text

    RNA-Directed Recombination of RNA In Vitro

    No full text

    Changes in aquatic macrophyte communities in Loch Leven: evidence of recovery from eutrophication?

    Get PDF
    This paper assesses changes in the macrophyte community of Loch Leven over a period of 100 years. Evidence is presented that shows that these changes are asso¬ci-ated with eutrophication and with subsequent recovery from eutro¬phi¬ca¬tion when anthropogenic nutrient inputs to the loch were reduced. This study uses macrophyte survey data from 1905, 1966, 1972, 1975, 1986, 1993, 1999 and 2008. In each of these surveys, apart from that conducted in 1905, the loch was divided into 19 sectors, each with at least one transect ranging from the shallowest to the deepest occurrence of macrophytes. From these data, a range of indicators of recovery were derived at the whole lake scale: the relative abun¬dance of taxa, taxon richness and evenness, and maximum growing depth. All of these metrics showed an improvement since 1972. Species richness, measured at the scales of survey sector and individual samples, also appeared to have increased in recent years. All of these measures, coupled with ordination of presence/absence composi¬tion data from all survey years, indicate that the macrophyte community in the loch is recovering towards the state that was recorded in 1905
    corecore