81 research outputs found

    Task-Dependent Inhomogeneous Muscle Activities within the Bi-Articular Human Rectus Femoris Muscle

    Get PDF
    The motor nerve of the bi-articular rectus femoris muscle is generally split from the femoral nerve trunk into two sub-branches just before it reaches the distal and proximal regions of the muscle. In this study, we examined whether the regional difference in muscle activities exists within the human rectus femoris muscle during maximal voluntary isometric contractions of knee extension and hip flexion. Surface electromyographic signals were recorded from the distal, middle, and proximal regions. In addition, twitch responses were evoked by stimulating the femoral nerve with supramaximal intensity. The root mean square value of electromyographic amplitude during each voluntary task was normalized to the maximal compound muscle action potential amplitude (M-wave) for each region. The electromyographic amplitudes were significantly smaller during hip flexion than during knee extension task for all regions. There was no significant difference in the normalized electromyographic amplitude during knee extension among regions within the rectus femoris muscle, whereas those were significantly smaller in the distal than in the middle and proximal regions during hip flexion task. These results indicate that the bi-articular rectus femoris muscle is differentially controlled along the longitudinal direction and that in particular the distal region of the muscle cannot be fully activated during hip flexion

    The global abundance of tree palms

    Get PDF
    Aim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location: Tropical and subtropical moist forests. Time period: Current. Major taxa studied: Palms (Arecaceae). Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions: Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    Limits on anomalous trilinear gauge couplings from WW -> e(+)e(-), WW -> e(+/-)mu(-/+), and WW ->mu(+)mu(-) events from pp collisions at root s=1.96 TeV

    Get PDF

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    The effect of mild cold exposure on UCP3 mRNA expression and UCP3 protein content in humans

    Get PDF
    Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, The Netherlands. [email protected] OBJECTIVE: In rodents, adaptive thermogenesis in response to cold exposure and high-fat feeding is accomplished by the activation of the brown adipose tissue specific mitochondrial uncoupling protein, UCP1. The recently discovered human uncoupling protein 3 is a possible candidate for adaptive thermogenesis in humans. In the present study we examined the effect of mild cold exposure on the mRNA and protein expression of UCP3. SUBJECTS: Ten healthy male volunteers (age 24.4 +/- 1.6 y; height 1.83 +/- 0.02 m; weight 77.3 +/- 3.0 kg; percentage body fat 19 +/- 2). DESIGN: Subjects stayed twice in the respiration chamber for 60 h (20.00-8.00 h); once at 22 degrees C (72 degrees F), and once at 16 degrees C (61 degrees F). After leaving the respiration chamber, muscle biopsies were taken and RT-competitive-PCR and Western blotting was used to measure UCP3 mRNA and protein expression respectively. RESULTS: Twenty-four-hour energy expenditure was significantly increased at 16 degrees C compared to 22 degrees C (P<0.05). At 16 degrees C, UCP3T (4.6 +/- 1.0 vs 7.7 +/- 1.5 amol/microg RNA, P=0.07), UCP3L (2.0 +/- 0.5 vs 3.5 +/- 0.9 amol/microg RNA, P=0.1) and UCP3S (2.6 +/- 0.6 vs 4.2 +/- 0.7 amol/microg RNA, P=0.07) mRNA expression tended to be lower compared with at 22 degrees C, whereas UCP3 protein content was, on average, not different. However, the individual differences in UCP3 protein content (16-22 degrees C) correlated positively with the differences in 24 h energy expenditure (r=0.86, P<0.05). CONCLUSION: The present study suggests that UCP3 protein content is related to energy metabolism in humans and might help in the metabolic adaptation to cold exposure. However, the down-regulation of UCP3 mRNA with mild cold exposure suggests that prolonged cold exposure will lead to lower UCP3 protein content. What the function of such down-regulation of UCP3 could be is presently unknown

    Lipolytic and nutritive blood flow response to beta-adrenoceptor stimulation in situ in subcutaneous abdominal adipose tissue in obese men

    Get PDF
    Lipolytic and nutritive blood flow response to beta-adrenoceptor stimulation in situ in subcutaneous abdominal adipose tissue in obese men. Schiffelers SL, Akkermans JA, Saris WH, Blaak EE. Department of Human Biology, Maastricht University, The Netherlands. OBJECTIVE: beta-Adrenoceptor-mediated whole-body lipolysis is impaired in obesity. This study investigated whether local adipocyte beta-adrenergic sensitivity and changes in nutritive blood flow in subcutaneous abdominal adipose tissue contribute to this impaired response. METHODS: Three microdialysis probes were placed in the subcutaneous abdominal adipose tissue of eight obese and nine lean men. Each probe was perfused with either 0.1, 1 and 10 microM isoprenaline; 1, 10 and 100 microM dobutamine or 1, 10 and 100 microM salbutamol, each dose for 45 min. RESULTS: At baseline, interstitial glycerol concentrations and ethanol out/in ratios were comparable between groups. During nonselective beta-, beta(1)- and beta(2)-adrenergic stimulation, interstitial glycerol concentrations increased and ethanol out/in ratios decreased similarly in obese and lean men. CONCLUSION: The lipolytic and nutritive blood flow response to beta(1)- beta(2)- and nonselective beta-adrenergic stimulation in situ is comparable in lean and obese male subjects. The present data suggest that a blunted beta-adrenergic sensitivity of the fat cell and an impaired local nutritive blood flow response do not contribute to the previously reported diminished whole-body beta-adrenoceptor-mediated lipolytic response in obese male
    corecore