851 research outputs found
Optimum spectral window for imaging of art with optical coherence tomography
Optical Coherence Tomography (OCT) has been shown to have potential for important applications in the field of art conservation and archaeology due to its ability to image subsurface microstructures non-invasively. However, its depth of penetration in painted objects is limited due to the strong scattering properties of artistsā paints. VIS-NIR (400 nm ā 2400 nm) reflectance spectra of a wide variety of paints made with historic artistsā pigments have been measured. The best spectral window with which to use optical coherence tomography (OCT) for the imaging of subsurface structure of paintings was found to be around 2.2 Ī¼m. The same spectral window would also be most suitable for direct infrared imaging of preparatory sketches under the paint layers. The reflectance spectra from a large sample of chemically verified pigments provide information on the spectral transparency of historic artistsā pigments/paints as well as a reference set of spectra for pigment identification. The results of the paper suggest that broadband sources at ~2 microns are highly desirable for OCT applications in art and potentially material science in general
Quantum Interference Effects in Molecular Y- and Rhomb-Type Systems
In this paper we report the first observation of molecular population trapping in four level systems. Constructive and destructive quantum interferences between two sum-frequncy two-photon transitions in Y- and rhomb-type four-level systems, respectively, im sodium molecules have been experimentally achieved by using only one laser source. Their energy level schemes are featured by the extremely near-resonant enhancement of the equal-frequency two-photon transitions, sharing both the initial and the intermediate levels for the Y-type, and sharing both the initial and the final levels for the rhomb-type systems. Their novel spectral effects are to show seriously restrained Doppler-free UV peak at the nominal location of the induced two-photon transition with visible fluorescence in rhomb-type schems, and to show a strong extra UV peak but null visible fluorescence in the middle between the two dipole allowed two-photon transitions
Effect of hydraulic retention time on the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system for micropollutants removal from municipal wastewater
Ā© 2017 Elsevier Ltd This study evaluated micropollutants removal and membrane fouling behaviour of a hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system at four different hydraulic retention times (HRTs) (24, 18, 12 and 6 h). The results revealed that HRT of 18 h was the optimal condition regarding the removal of most selected micropollutants. As the primary removal mechanism in the hybrid system was biodegradation, the attached growth pattern was desirable for enriching slow growing bacteria and developing a diversity of biocoenosis. Thus, the efficient removal of micropollutants was obtained. In terms of membrane fouling propensity analysis, a longer HRT (e.g. HRTs of 24 and 18 h) could significantly mitigate membrane fouling when compared with the shortest HRT of 6 h. Hence, enhanced system performance could be achieved when the MBBR-MBR system was operated at HRT of 18 h
Antimony-doped graphene nanoplatelets
Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalystsclose0
Universal scaling relation in high-temperature superconductors
Scaling laws express a systematic and universal simplicity among complex
systems in nature. For example, such laws are of enormous significance in
biology. Scaling relations are also important in the physical sciences. The
seminal 1986 discovery of high transition-temperature (high-T_c)
superconductivity in cuprate materials has sparked an intensive investigation
of these and related complex oxides, yet the mechanism for superconductivity is
still not agreed upon. In addition, no universal scaling law involving such
fundamental properties as T_c and the superfluid density \rho_s, a quantity
indicative of the number of charge carriers in the superconducting state, has
been discovered. Here we demonstrate that the scaling relation \rho_s \propto
\sigma_{dc} T_c, where the conductivity \sigma_{dc} characterizes the
unidirectional, constant flow of electric charge carriers just above T_c,
universally holds for a wide variety of materials and doping levels. This
surprising unifying observation is likely to have important consequences for
theories of high-T_c superconductivity.Comment: 11 pages, 2 figures, 2 table
Public diplomacy in a networked society: The Chinese governmentāĆƬNGO coalition network on acquired immune deficiency syndrome prevention
In the era of globalization, the line between domestic and international communication is becoming increasingly blurred. Public diplomacy communication is one such case. Public diplomacy has evolved from a focus on mass media to communication efforts to build transnational communication networks of relationships with respected international non-governmental organizations. This article explores how the Chinese government communicated with and collaborated with transnational human immunodeficiency virus/acquired immune deficiency syndrome international non-governmental organizations. The findings of a network analysis of Chinese-international non-governmental organizations public diplomacy suggest that the Chinese government is strategically communicating with international organizations to help address a domestic issue. Additionally, the findings of a content analysis of international media coverage of Chinaās management of the human immunodeficiency virus/acquired immune deficiency syndrome issue suggest that more positive frames are occurring in the news. China is now viewed as making progress in its handling of the health crisis.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor
Despite twenty years of research, the phase diagram of high transition-
temperature superconductors remains enigmatic. A central issue is the origin of
the differences in the physical properties of these copper oxides doped to
opposite sides of the superconducting region. In the overdoped regime, the
material behaves as a reasonably conventional metal, with a large Fermi
surface. The underdoped regime, however, is highly anomalous and appears to
have no coherent Fermi surface, but only disconnected "Fermi arcs". The
fundamental question, then, is whether underdoped copper oxides have a Fermi
surface, and if so, whether it is topologically different from that seen in the
overdoped regime. Here we report the observation of quantum oscillations in the
electrical resistance of the oxygen-ordered copper oxide YBa2Cu3O6.5,
establishing the existence of a well-defined Fermi surface in the ground state
of underdoped copper oxides, once superconductivity is suppressed by a magnetic
field. The low oscillation frequency reveals a Fermi surface made of small
pockets, in contrast to the large cylinder characteristic of the overdoped
regime. Two possible interpretations are discussed: either a small pocket is
part of the band structure specific to YBa2Cu3O6.5 or small pockets arise from
a topological change at a critical point in the phase diagram. Our
understanding of high-transition temperature (high-Tc) superconductors will
depend critically on which of these two interpretations proves to be correct
Accelerated search for biomolecular network models to interpret high-throughput experimental data
<p>Abstract</p> <p>Background</p> <p>The functions of human cells are carried out by biomolecular networks, which include proteins, genes, and regulatory sites within DNA that encode and control protein expression. Models of biomolecular network structure and dynamics can be inferred from high-throughput measurements of gene and protein expression. We build on our previously developed fuzzy logic method for bridging quantitative and qualitative biological data to address the challenges of noisy, low resolution high-throughput measurements, i.e., from gene expression microarrays. We employ an evolutionary search algorithm to accelerate the search for hypothetical fuzzy biomolecular network models consistent with a biological data set. We also develop a method to estimate the probability of a potential network model fitting a set of data by chance. The resulting metric provides an estimate of both model quality and dataset quality, identifying data that are too noisy to identify meaningful correlations between the measured variables.</p> <p>Results</p> <p>Optimal parameters for the evolutionary search were identified based on artificial data, and the algorithm showed scalable and consistent performance for as many as 150 variables. The method was tested on previously published human cell cycle gene expression microarray data sets. The evolutionary search method was found to converge to the results of exhaustive search. The randomized evolutionary search was able to converge on a set of similar best-fitting network models on different training data sets after 30 generations running 30 models per generation. Consistent results were found regardless of which of the published data sets were used to train or verify the quantitative predictions of the best-fitting models for cell cycle gene dynamics.</p> <p>Conclusion</p> <p>Our results demonstrate the capability of scalable evolutionary search for fuzzy network models to address the problem of inferring models based on complex, noisy biomolecular data sets. This approach yields multiple alternative models that are consistent with the data, yielding a constrained set of hypotheses that can be used to optimally design subsequent experiments.</p
- ā¦