33 research outputs found
Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit infection of all three CHIKV genotypes. Four of 36 neutralizing MAbs (CHK-102, CHK-152, CHK-166, and CHK-263) provided complete protection against lethality as prophylaxis in highly susceptible immunocompromised mice lacking the type I IFN receptor (Ifnar−/−) and mapped to distinct epitopes on the E1 and E2 structural proteins. CHK-152, the most protective MAb, was humanized, shown to block viral fusion, and require Fc effector function for optimal activity in vivo. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs (CHK-102+CHK-152 or CHK-166+CHK-152) limited the development of resistance and protected immunocompromised mice against disease when given 24 to 36 hours before CHIKV-induced death. Selected pairs of highly neutralizing MAbs may be a promising treatment option for CHIKV in humans
Secular Evolution and the Growth of Pseudobulges in Disk Galaxies
Galaxy evolution is in transition from an early universe dominated by
hierarchical clustering to a future dominated by secular processes. These
result from interactions involving collective phenomena such as bars, oval
disks, spiral structure, and triaxial dark halos. This paper summarizes a
review by Kormendy & Kennicutt (2004) using, in part, illustrations of
different galaxies. In simulations, bars rearrange disk gas into outer rings,
inner rings, and galactic centers, where high gas densities feed starbursts.
Consistent with this picture, many barred and oval galaxies have dense central
concentrations of gas and star formation rates that can build bulge-like
stellar densities on timescales of a few billion years. We conclude that
secular evolution builds dense central components in disk galaxies that look
like classical, merger-built bulges but that were made slowly out of disk gas.
We call these pseudobulges. Many pseudobulges can be recognized because they
have characteristics of disks: (1) flatter shapes than those of classical
bulges, (2) correspondingly large ratios of ordered to random velocities, (3)
small velocity dispersions, (4) spiral structure or nuclear bars, (5) nearly
exponential brightness profiles, and (6) starbursts. These structures occur
preferentially in barred and oval galaxies in which secular evolution should be
most rapid. Thus a variety of observational and theoretical results contribute
to a new paradigm of secular evolution that complements hierarchical
clustering.Comment: 19 pages, 9 Postscript figures; requires kapproc.cls and procps.sty;
to appear in "Penetrating Bars Through Masks of Cosmic Dust: The Hubble
Tuning Fork Strikes a New Note", ed. Block, Freeman, Puerari, Groess, and
Block, Dordrecht: Kluwer, in press; for a version with full resolution
figures, see http://chandra.as.utexas.edu/~kormendy/ar3ss.htm
The First Human Epitope Map of the Alphaviral E1 and E2 Proteins Reveals a New E2 Epitope with Significant Virus Neutralizing Activity
Although the murine immune response to Venezuelan equine encephalitis virus (VEEV) is well-characterized, little is known about the human antibody response to VEEV. In this study we used phage display technology to isolate a panel of 11 VEEV-specfic Fabs from two human donors. Seven E2-specific and four E1-specific Fabs were identified and mapped to five E2 epitopes and three E1 epitopes. Two neutralizing Fabs were isolated, E2-specific F5 and E1-specific L1A7, although the neutralizing capacity of L1A7 was 300-fold lower than F5. F5 Fab was expressed as a complete IgG1 molecule, F5 native (n) IgG. Neutralization-escape VEEV variants for F5 nIgG were isolated and their structural genes were sequenced to determine the theoretical binding site of F5. Based on this sequence analysis as well as the ability of F5 to neutralize four neutralization-escape variants of anti-VEEV murine monoclonal antibodies (mapped to E2 amino acids 182–207), a unique neutralization domain on E2 was identified and mapped to E2 amino acids 115–119
What’s wrong with evolutionary biology?
There have been periodic claims that evolutionary biology needs urgent reform, and this article tries to account for the volume and persistence of this discontent. It is argued that a few inescapable properties of the field make it prone to criticisms of predictable kinds, whether or not the criticisms have any merit. For example, the variety of living things and the complexity of evolution make it easy to generate data that seem revolutionary (e.g. exceptions to well-established generalizations, or neglected factors in evolution), and lead to disappointment with existing explanatory frameworks (with their high levels of abstraction, and limited predictive power). It is then argued that special discontent stems from misunderstandings and dislike of one well-known but atypical research programme: the study of adaptive function, in the tradition of behavioural ecology. To achieve its goals, this research needs distinct tools, often including imaginary agency, and a partial description of the evolutionary process. This invites mistaken charges of narrowness and oversimplification (which come, not least, from researchers in other subfields), and these chime with anxieties about human agency and overall purpose. The article ends by discussing several ways in which calls to reform evolutionary biology actively hinder progress in the field
Small Theropod Teeth from the Late Cretaceous of the San Juan Basin, Northwestern New Mexico and Their Implications for Understanding Latest Cretaceous Dinosaur Evolution
Studying the evolution and biogeographic distribution of dinosaurs during the latest Cretaceous is critical for better understanding the end-Cretaceous extinction event that killed off all non-avian dinosaurs. Western North America contains among the best records of Late Cretaceous terrestrial vertebrates in the world, but is biased against small-bodied dinosaurs. Isolated teeth are the primary evidence for understanding the diversity and evolution of small-bodied theropod dinosaurs during the Late Cretaceous, but few such specimens have been well documented from outside of the northern Rockies, making it difficult to assess Late Cretaceous dinosaur diversity and biogeographic patterns. We describe small theropod teeth from the San Juan Basin of northwestern New Mexico. These specimens were collected from strata spanning Santonian - Maastrichtian. We grouped isolated theropod teeth into several morphotypes, which we assigned to higher-level theropod clades based on possession of phylogenetic synapomorphies. We then used principal components analysis and discriminant function analyses to gauge whether the San Juan Basin teeth overlap with, or are quantitatively distinct from, similar tooth morphotypes from other geographic areas. The San Juan Basin contains a diverse record of small theropods. Late Campanian assemblages differ from approximately coeval assemblages of the northern Rockies in being less diverse with only rare representatives of troodontids and a Dromaeosaurus-like taxon. We also provide evidence that erect and recurved morphs of a Richardoestesia-like taxon represent a single heterodont species. A late Maastrichtian assemblage is dominated by a distinct troodontid. The differences between northern and southern faunas based on isolated theropod teeth provide evidence for provinciality in the late Campanian and the late Maastrichtian of North America. However, there is no indication that major components of small-bodied theropod diversity were lost during the Maastrichtian in New Mexico. The same pattern seen in northern faunas, which may provide evidence for an abrupt dinosaur extinction