16 research outputs found

    Linking water quality to living resources in a mid-Atlantic lagoon system, USA

    Get PDF
    The mid-Atlantic coastal bays are shallow coastal lagoons, separated from the Atlantic Ocean by barrier sand islands with oceanic exchanges restricted to narrow inlets. The relatively poor flushing of these lagoon systems makes them susceptible to eutrophication resulting from anthropogenic nutrient loadings. An intensive water quality and seagrass monitoring program was initiated to track ecological changes in the Maryland and Virginia coastal bays. The purpose of this study was to analyze existing monitoring data to determine status and trends in eutrophication and to determine any associations between water quality and living resources. Analysis of monitoring program data revealed several trends: (1) decadal decreases in nutrient and chlorophyll concentrations, followed by recently increasing trends; (2) decadal increases in seagrass coverage, followed by a recent period of no change; (3) blooms of macroalgae and brown tide microalgae; and (4) exceedance of water quality thresholds: chlorophyll a (15 mu g/L), total nitrogen (0.65 mg/L or 46 mu mol/L), total phosphorus (0.037 mg/L or 1.2 mu mol/L), and dissolved oxygen (5 mg/L) in many areas within the Maryland coastal bays. The water quality thresholds were based on habitat requirements for living resources (seagrass and fish) and used to calculate a water quality index, which was used to compare the bay segments. Strong gradients in water quality were correlated to changes in seagrass coverage between segments. These factors indicate that these coastal bays are in a state of transition, with a suite of metrics indicating degrading conditions. Continued monitoring and intensified management will be required to avert exacerbation of the observed eutrophication trends. Coastal lagoons worldwide are experiencing similar degrading trends due to increasing human pressures, and assessing status and trends relative to biologically relevant thresholds can assist in determining monitoring and management priorities and goals

    The Internship Year

    No full text

    Bacteria-mediated delivery of nanoparticles and cargo into cells

    Get PDF
    Nanoparticles and bacteria can be used, independently, to deliver genes and proteins into mammalian cells for monitoring or altering gene expression and protein production. Here, we show the simultaneous use of nanoparticles and bacteria to deliver DNA-based model drug molecules in vivo and in vitro. In our approach, cargo (in this case, a fluorescent or a bioluminescent gene) is loaded onto the nanoparticles, which are carried on the bacteria surface. When incubated with cells, the cargo-carrying bacteria (‘microbots’) were internalized by the cells, and the genes released from the nanoparticles were expressed in the cells. Mice injected with microbots also successfully expressed the genes as seen by the luminescence in different organs. This new approach may be used to deliver different types of cargo into live animals and a variety of cells in culture without the need for complicated genetic manipulations
    corecore