15 research outputs found

    A Monte Carlo Simulation-Based Approach to Evaluate the Performance of Three Meteorological Drought Indices in Northwest of Iran

    Get PDF
    Although meteorological drought indices are considered as important tools for drought monitoring, they are embedded with different theoretical and experimental structures. Regarding the different geographic and climatic conditions around the world, the most meteorological drought indices have been commonly applied for drought monitoring in different parts of the world. Interestingly, it is observed that such indices in the published studies on drought monitoring have usually yielded inconsistent performance. On the other hand, most studies on drought monitoring as well as the performance of drought indices has been based on short-term historical data (less than 50 years). Therefore, this study aimed to analyze and compare the performance of three common indices of SPI, RAI and PNPI to predict long-term drought events using the Monte Carlo procedure and historical data. To do this end, the 50-year recorded or historical rainfall data across 11 synoptic stations in the Northwest of Iran were employed to generate 1000 synthetic data series so that the characteristics of long-term drought might be determined and the performance of those three indices might be analyzed and compared. The results indicated a very high comparative advantage of the SPI in terms of yielding a satisfactory and detailed analysis to determine the characteristics of long-term drought. Also, the RAI indicated significant deviations from normalized natural processes. However, these results could not reasonably and sufficiently predict long-term drought. Finally, the PNPI was determined as the most uncertain and spatial index (depending on average or coefficient of variation of rainfall data) in drought monitoring

    Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions

    No full text
    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pacific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple metrics to establish the model performance. Using this method, some longstanding problems in low-level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure, and the associated impact on radiative transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median exhibits the well-known “too few too bright” problem. The boundary-layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular, the vertical structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid parameterization.Atmospheric PhysicsAtmospheric Remote Sensin
    corecore