660 research outputs found

    SNFing HIV transcription

    Get PDF
    The SWI/SNF chromatin remodeling complex is an essential regulator of transcription of cellular genes. HIV-1 infection induces exit of a core component of SWI/SNF, Ini1, into the cytoplasm and its association with the viral pre-integration complex. Several recent papers published in EMBO Journal, Journal of Biological Chemistry, and Retrovirology provide new information regarding possible functions of Ini1 and SWI/SNF in HIV life cycle. It appears that Ini1 has an inhibitory effect on pre-integration steps of HIV replication, but also contributes to stimulation of Tat-mediated transcription. This stimulation involves displacement of the nucleosome positioned at the HIV promoter

    "A calorie is a calorie" violates the second law of thermodynamics

    Get PDF
    The principle of "a calorie is a calorie," that weight change in hypocaloric diets is independent of macronutrient composition, is widely held in the popular and technical literature, and is frequently justified by appeal to the laws of thermodynamics. We review here some aspects of thermodynamics that bear on weight loss and the effect of macronutrient composition. The focus is the so-called metabolic advantage in low-carbohydrate diets – greater weight loss compared to isocaloric diets of different composition. Two laws of thermodynamics are relevant to the systems considered in nutrition and, whereas the first law is a conservation (of energy) law, the second is a dissipation law: something (negative entropy) is lost and therefore balance is not to be expected in diet interventions. Here, we propose that a misunderstanding of the second law accounts for the controversy about the role of macronutrient effect on weight loss and we review some aspects of elementary thermodynamics. We use data in the literature to show that thermogenesis is sufficient to predict metabolic advantage. Whereas homeostasis ensures balance under many conditions, as a general principle, "a calorie is a calorie" violates the second law of thermodynamics

    Punica granatum (Pomegranate) juice provides an HIV-1 entry inhibitor and candidate topical microbicide

    Get PDF
    BACKGROUND: For β‰ˆ 24 years the AIDS pandemic has claimed β‰ˆ 30 million lives, causing β‰ˆ 14,000 new HIV-1 infections daily worldwide in 2003. About 80% of infections occur by heterosexual transmission. In the absence of vaccines, topical microbicides, expected to block virus transmission, offer hope for controlling the pandemic. Antiretroviral chemotherapeutics have decreased AIDS mortality in industrialized countries, but only minimally in developing countries. To prevent an analogous dichotomy, microbicides should be: acceptable; accessible; affordable; and accelerative in transition from development to marketing. Already marketed pharmaceutical excipients or foods, with established safety records and adequate anti-HIV-1 activity, may provide this option. METHODS: Fruit juices were screened for inhibitory activity against HIV-1 IIIB using CD4 and CXCR4 as cell receptors. The best juice was tested for inhibition of: (1) infection by HIV-1 BaL, utilizing CCR5 as the cellular coreceptor; and (2) binding of gp120 IIIB and gp120 BaL, respectively, to CXCR4 and CCR5. To remove most colored juice components, the adsorption of the effective ingredient(s) to dispersible excipients and other foods was investigated. A selected complex was assayed for inhibition of infection by primary HIV-1 isolates. RESULTS: HIV-1 entry inhibitors from pomegranate juice adsorb onto corn starch. The resulting complex blocks virus binding to CD4 and CXCR4/CCR5 and inhibits infection by primary virus clades A to G and group O. CONCLUSION: These results suggest the possibility of producing an anti-HIV-1 microbicide from inexpensive, widely available sources, whose safety has been established throughout centuries, provided that its quality is adequately standardized and monitored

    Focal-Plane Change Triggered Video Compression for Low-Power Vision Sensor Systems

    Get PDF
    Video sensors with embedded compression offer significant energy savings in transmission but incur energy losses in the complexity of the encoder. Energy efficient video compression architectures for CMOS image sensors with focal-plane change detection are presented and analyzed. The compression architectures use pixel-level computational circuits to minimize energy usage by selectively processing only pixels which generate significant temporal intensity changes. Using the temporal intensity change detection to gate the operation of a differential DCT based encoder achieves nearly identical image quality to traditional systems (4dB decrease in PSNR) while reducing the amount of data that is processed by 67% and reducing overall power consumption reduction of 51%. These typical energy savings, resulting from the sparsity of motion activity in the visual scene, demonstrate the utility of focal-plane change triggered compression to surveillance vision systems

    Intraoperative device closure of perimembranous ventricular septal defects in the young children under transthoracic echocardiographic guidance; initial experience

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>This study aimed to assess the safety and feasibility of intraoperative device closure of perimembranous ventricular septal defects (VSD) in young children guided by transthoracic echocardiography (TTE).</p> <p>Methods</p> <p>We enrolled 18 patients from our hospital to participate in the study from June 2011 to September 2011. A minimal inferior median incision was performed after full evaluation of the perimembranous VSD by real-time TTE, and a domestically made device was inserted to occlude the perimembranous VSD. The proper size of the device was determined by means of transthoracic echocardiographic analysis.</p> <p>Results</p> <p>Implantation was ultimately successful in 16 patients using TTE guidance. In these cases, the complete closure rate immediately following the operation and on subsequent follow-up was 100%. Symmetric devices were used in 14 patients, and asymmetric devices were used in two patients. Two patient were transformed to surgical treatment, one for significant residual shunting, and the other for unsuccessful wire penetration of the VSD. The follow-up periods were less than nine months, and only one patient had mild aortic regurgitation. There were no instances of residual shunt, noticeable aortic regurgitation, significant arrhythmia, thrombosis, or device failure.</p> <p>Conclusions</p> <p>Minimally invasive transthoracic device closure of perimembranous VSDs is safe and feasible, using a domestically made device under transthoracic echocardiographic guidance, without the need for cardiopulmonary bypass. This technique should be considered an acceptable alternative to surgery or device closure guided by transesophageal echocardiography in selected young children. However, a long-term evaluation of outcomes is necessary.</p

    A Classification Method Based on Principal Components of SELDI Spectra to Diagnose of Lung Adenocarcinoma

    Get PDF
    Lung cancer is the leading cause of cancer death worldwide, but techniques for effective early diagnosis are still lacking. Proteomics technology has been applied extensively to the study of the proteins involved in carcinogenesis. In this paper, a classification method was developed based on principal components of surface-enhanced laser desorption/ionization (SELDI) spectral data. This method was applied to SELDI spectral data from 71 lung adenocarcinoma patients and 24 healthy individuals. Unlike other peak-selection-based methods, this method takes each spectrum as a unity. The aim of this paper was to demonstrate that this unity-based classification method is more robust and powerful as a method of diagnosis than peak-selection-based methods.The results showed that this classification method, which is based on principal components, has outstanding performance with respect to distinguishing lung adenocarcinoma patients from normal individuals. Through leaving-one-out, 19-fold, 5-fold and 2-fold cross-validation studies, we found that this classification method based on principal components completely outperforms peak-selection-based methods, such as decision tree, classification and regression tree, support vector machine, and linear discriminant analysis.The classification method based on principal components of SELDI spectral data is a robust and powerful means of diagnosing lung adenocarcinoma. We assert that the high efficiency of this classification method renders it feasible for large-scale clinical use

    Is a Calorie Really a Calorie? Metabolic Advantage of Low-Carbohydrate Diets

    Get PDF
    The first law of thermodynamics dictates that body mass remains constant when caloric intake equals caloric expenditure. It should be noted, however, that different diets lead to different biochemical pathways that are not equivalent when correctly compared through the laws of thermodynamics. It is inappropriate to assume that the only thing that counts in terms of food consumption and energy balance is the intake of dietary calories and weight storage. Well-controlled studies suggest that calorie content may not be as predictive of fat loss as is reduced carbohydrate consumption. Biologically speaking, a calorie is certainly not a calorie. The ideal weight loss diet, if it even exists, remains to be determined, but a high-carbohydrate/low-protein diet may be unsatisfactory for many obese individuals

    dATF4 regulation of mitochondrial folate-mediated one-carbon metabolism is neuroprotective.

    Get PDF
    Neurons rely on mitochondria as their preferred source of energy. Mutations in PINK1 and PARKIN cause neuronal death in early-onset Parkinson's disease (PD), thought to be due to mitochondrial dysfunction. In Drosophila pink1 and parkin mutants, mitochondrial defects lead to the compensatory upregulation of the mitochondrial one-carbon cycle metabolism genes by an unknown mechanism. Here we uncover that this branch is triggered by the activating transcription factor 4 (ATF4). We show that ATF4 regulates the expression of one-carbon metabolism genes SHMT2 and NMDMC as a protective response to mitochondrial toxicity. Suppressing Shmt2 or Nmdmc caused motor impairment and mitochondrial defects in flies. Epistatic analyses showed that suppressing the upregulation of Shmt2 or Nmdmc deteriorates the phenotype of pink1 or parkin mutants. Conversely, the genetic enhancement of these one-carbon metabolism genes in pink1 or parkin mutants was neuroprotective. We conclude that mitochondrial dysfunction caused by mutations in the Pink1/Parkin pathway engages ATF4-dependent activation of one-carbon metabolism as a protective response. Our findings show a central contribution of ATF4 signalling to PD that may represent a new therapeutic strategy. A video abstract for this article is available at https://youtu.be/cFJJm2YZKKM
    • …
    corecore