37 research outputs found

    On the non-existence of an R-labeling

    Full text link
    We present a family of Eulerian posets which does not have any R-labeling. The result uses a structure theorem for R-labelings of the butterfly poset.Comment: 6 pages, 1 figure. To appear in the journal Orde

    Visual Algebraic proofs for Unknot Detection

    Get PDF
    A knot diagram looks like a two-dimensional drawing of aknotted rubberband. Proving that a given knot diagram can be untangled(that is, is a trivial knot, called an unknot) is one of the most famousproblems of knot theory. For a small knot diagram, one can try to finda sequence of untangling moves explicitly, but for a larger knot diagramproducing such a proof is difficult, and the produced proofs are hardto inspect and understand. Advanced approaches use algebra, with anadvantage that since the proofs are algebraic, a computer can be usedto produce the proofs, and, therefore, a proof can be produced evenfor large knot diagrams. However, such produced proofs are not easy toread and, for larger diagrams, not likely to be human readable at all.We propose a new approach combining advantages of these: the proofsare algebraic and can be produced by a computer, whilst each part ofthe proof can be represented as a reasonably small knot-like diagram(a new representation as a labeled tangle diagram), which can be easilyinspected by a human for the purposes of checking the proof and findingout interesting facts about the knot diagram

    Knot Theory: from Fox 3-colorings of links to Yang-Baxter homology and Khovanov homology

    Full text link
    This paper is an extended account of my "Introductory Plenary talk at Knots in Hellas 2016" conference We start from the short introduction to Knot Theory from the historical perspective, starting from Heraclas text (the first century AD), mentioning R.Llull (1232-1315), A.Kircher (1602-1680), Leibniz idea of Geometria Situs (1679), and J.B.Listing (student of Gauss) work of 1847. We spend some space on Ralph H. Fox (1913-1973) elementary introduction to diagram colorings (1956). In the second section we describe how Fox work was generalized to distributive colorings (racks and quandles) and eventually in the work of Jones and Turaev to link invariants via Yang-Baxter operators, here the importance of statistical mechanics to topology will be mentioned. Finally we describe recent developments which started with Mikhail Khovanov work on categorification of the Jones polynomial. By analogy to Khovanov homology we build homology of distributive structures (including homology of Fox colorings) and generalize it to homology of Yang-Baxter operators. We speculate, with supporting evidence, on co-cycle invariants of knots coming from Yang-Baxter homology. Here the work of Fenn-Rourke-Sanderson (geometric realization of pre-cubic sets of link diagrams) and Carter-Kamada-Saito (co-cycle invariants of links) will be discussed and expanded. Dedicated to Lou Kauffman for his 70th birthday.Comment: 35 pages, 31 figures, for Knots in Hellas II Proceedings, Springer, part of the series Proceedings in Mathematics & Statistics (PROMS

    Super-A-polynomials for Twist Knots

    Full text link
    We conjecture formulae of the colored superpolynomials for a class of twist knots KpK_p where p denotes the number of full twists. The validity of the formulae is checked by applying differentials and taking special limits. Using the formulae, we compute both the classical and quantum super-A-polynomial for the twist knots with small values of p. The results support the categorified versions of the generalized volume conjecture and the quantum volume conjecture. Furthermore, we obtain the evidence that the Q-deformed A-polynomials can be identified with the augmentation polynomials of knot contact homology in the case of the twist knots.Comment: 22+16 pages, 16 tables and 5 figures; with a Maple program by Xinyu Sun and a Mathematica notebook in the ancillary files linked on the right; v2 change in appendix B, typos corrected and references added; v3 change in section 3.3; v4 corrections in Ooguri-Vafa polynomials and quantum super-A-polynomials for 7_2 and 8_1 are adde

    The Number N(f;H) and the Root Classes

    No full text

    On the equivalent spines problem

    No full text
    We construct examples of compact connected orientable 3-manifolds (regularly embedded into the 3-sphere) with connected boundary of genus greater or equal 2 which are not homeomorphic but they admit the same spine
    corecore