14 research outputs found

    Spectroscopic analysis of finite size effects around a Kondo quantum dot

    Full text link
    We consider a simple setup in which a small quantum dot is strongly connected to a finite size box. This box can be either a metallic box or a finite size quantum wire.The formation of the Kondo screening cloud in the box strongly depends on the ratio between the Kondo temperature and the box level spacing. By weakly connecting two metallic reservoirs to the quantum dot, a detailed spectroscopic analysis can be performed. Since the transport channels and the screening channels are almost decoupled, such a setup allows an easier access to the measure of finite-size effects associated with the finite extension of the Kondo cloud.Comment: contribution to Les Houches proceeding, ``Quantum magnetism'' 200

    Transcriptome Profiling of Citrus Fruit Response to Huanglongbing Disease

    Get PDF
    Huanglongbing (HLB) or “citrus greening” is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB-affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of photosynthesis and in ATP synthesis. Activation of protein degradation and misfolding processes were observed at the transcriptomic level. Transcripts for heat shock proteins were down-regulated at all disease stages, resulting in further protein misfolding. HLB strongly affected pathways involved in source-sink communication, including sucrose and starch metabolism and hormone synthesis and signaling. Transcription of several genes involved in the synthesis and signal transduction of cytokinins and gibberellins was repressed while that of genes involved in ethylene pathways was induced. CaLas infection triggered a response via both the salicylic acid and jasmonic acid pathways and increased the transcript abundance of several members of the WRKY family of transcription factors. Findings focused on the fruit provide valuable insight to understanding the mechanisms of the HLB-induced fruit disorder and eventually developing methods based on small molecule applications to mitigate its devastating effects on fruit production

    Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alfalfa, [<it>Medicago sativa </it>(L.) sativa], a widely-grown perennial forage has potential for development as a cellulosic ethanol feedstock. However, the genomics of alfalfa, a non-model species, is still in its infancy. The recent advent of RNA-Seq, a massively parallel sequencing method for transcriptome analysis, provides an opportunity to expand the identification of alfalfa genes and polymorphisms, and conduct in-depth transcript profiling.</p> <p>Results</p> <p>Cell walls in stems of alfalfa genotype 708 have higher cellulose and lower lignin concentrations compared to cell walls in stems of genotype 773. Using the Illumina GA-II platform, a total of 198,861,304 expression sequence tags (ESTs, 76 bp in length) were generated from cDNA libraries derived from elongating stem (ES) and post-elongation stem (PES) internodes of 708 and 773. In addition, 341,984 ESTs were generated from ES and PES internodes of genotype 773 using the GS FLX Titanium platform. The first alfalfa (<it>Medicago sativa</it>) gene index (MSGI 1.0) was assembled using the Sanger ESTs available from GenBank, the GS FLX Titanium EST sequences, and the <it>de novo </it>assembled Illumina sequences. MSGI 1.0 contains 124,025 unique sequences including 22,729 tentative consensus sequences (TCs), 22,315 singletons and 78,981 pseudo-singletons. We identified a total of 1,294 simple sequence repeats (SSR) among the sequences in MSGI 1.0. In addition, a total of 10,826 single nucleotide polymorphisms (SNPs) were predicted between the two genotypes. Out of 55 SNPs randomly selected for experimental validation, 47 (85%) were polymorphic between the two genotypes. We also identified numerous allelic variations within each genotype. Digital gene expression analysis identified numerous candidate genes that may play a role in stem development as well as candidate genes that may contribute to the differences in cell wall composition in stems of the two genotypes.</p> <p>Conclusions</p> <p>Our results demonstrate that RNA-Seq can be successfully used for gene identification, polymorphism detection and transcript profiling in alfalfa, a non-model, allogamous, autotetraploid species. The alfalfa gene index assembled in this study, and the SNPs, SSRs and candidate genes identified can be used to improve alfalfa as a forage crop and cellulosic feedstock.</p

    Recent advances of metabolomics in plant biotechnology

    Get PDF
    Biotechnology, including genetic modification, is a very important approach to regulate the production of particular metabolites in plants to improve their adaptation to environmental stress, to improve food quality, and to increase crop yield. Unfortunately, these approaches do not necessarily lead to the expected results due to the highly complex mechanisms underlying metabolic regulation in plants. In this context, metabolomics plays a key role in plant molecular biotechnology, where plant cells are modified by the expression of engineered genes, because we can obtain information on the metabolic status of cells via a snapshot of their metabolome. Although metabolome analysis could be used to evaluate the effect of foreign genes and understand the metabolic state of cells, there is no single analytical method for metabolomics because of the wide range of chemicals synthesized in plants. Here, we describe the basic analytical advancements in plant metabolomics and bioinformatics and the application of metabolomics to the biological study of plants

    Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH)

    Get PDF
    Background: ur current understanding of biofilms indicates that these structures are typically composed of many different microbial species. However, the lack of reliable techniques for the discrimination of each population has meant that studies focusing on multi-species biofilms are scarce and typically generate qualitative rather than quantitative data.Methodology/principal findings: we employ peptide nucleic acid fluorescence in situ hybridization (PNA FISH) methods to quantify and visualize mixed biofilm populations. As a case study, we present the characterization of Salmonella enterica/Listeria monocytogenes/Escherichia coli single, dual and tri-species biofilms in seven different support materials. Ex-situ, we were able to monitor quantitatively the populations of ~56 mixed species biofilms up to 48 h, regardless of the support material. In situ, a correct quantification remained more elusive, but a qualitative understanding of biofilm structure and composition is clearly possible by confocal laser scanning microscopy (CLSM) at least up to 192 h. Combining the data obtained from PNA FISH/CLSM with data from other established techniques and from calculated microbial parameters, we were able to develop a model for this tri-species biofilm. The higher growth rate and exopolymer production ability of E. coli probably led this microorganism to outcompete the other two [average cell numbers (cells/cm2) for 48 h biofilm: E. coli 2,1×108 (±2,4×107); L. monocytogenes 6,8×107 (±9,4×106); and S. enterica 1,4×106 (±4,1×105)]. This overgrowth was confirmed by CSLM, with two well-defined layers being easily identified: the top one with E. coli, and the bottom one with mixed regions of L. monocytogenes and S. enterica.Significance: while PNA FISH has been described previously for the qualitative study of biofilm populations, the present investigation demonstrates that it can also be used for the accurate quantification and spatial distribution of species in polymicrobial communities. Thus, it facilitates the understanding of interspecies interactions and how these are affected by changes in the surrounding environmen
    corecore