78 research outputs found
In memoriam: Celso-Ramon Garcia, M.D. (1922–2004), reproductive medicine visionary
This article traces the career of Celso-Ramon Garcia (1922–2004), noted physician, educator, and internationally renowned pioneer in the field of reproductive endocrinology. His work helped to formulate oral contraceptives used by millions of women throughout the world. Garcia's research collaborators included Gregory Pincus and John Rock, who together finalized the landmark clinical data needed to secure initial FDA approval for "the pill" in 1960. In addition to Garcia's monumental work in contraceptive endocrinology, his scholarly interests encompassed physiology of the menopause, minimally invasive reproductive surgery, as well as psychological aspects of infertility. Closely identified with the University of Pennsylvania, Garcia was instrumental in establishing the first formal clinical program in reproductive biology and influenced countless young scientists whose training he supervised and mentored. His distinguished career was emblematic of the best of the medical profession, characterized by compassion, intellect, and a sincere desire to help others. Our manuscript outlines Garcia's wide range of interests, acknowledges his superior fund of knowledge, and honors his humanitarian spirit – all of which contributed to an impressive legacy of medical discoveries. The impact of Prof. Garcia's work will continue to be felt for many years
Mesenchymal stem cell-conditioned medium reduces disease severity and immune responses in inflammatory arthritis
We evaluated the therapeutic potential of mesenchymal stem cell-conditioned medium (CM-MSC) as an alternative to cell therapy in an antigen-induced model of arthritis (AIA). Disease severity and cartilage loss were evaluated by histopathological analysis of arthritic knee joints and immunostaining of aggrecan neoepitopes. Cell proliferation was assessed for activated and naïve CD4+ T cells from healthy mice following culture with CM-MSC or co-culture with MSCs. T cell polarization was analysed in CD4+ T cells isolated from spleens and lymph nodes of arthritic mice treated with CM-MSC or MSCs. CM-MSC treatment significantly reduced knee-joint swelling, histopathological signs of AIA, cartilage loss and suppressed TNFα induction. Proliferation of CD4+ cells from spleens of healthy mice was not affected by CM-MSC but reduced when cells were co-cultured with MSCs. In the presence of CM-MSC or MSCs, increases in IL-10 concentration were observed in culture medium. Finally, CD4+ T cells from arthritic mice treated with CM-MSC showed increases in FOXP3 and IL-4 expression and positively affected the Treg:Th17 balance in the tissue. CM-MSC treatment reduces cartilage damage and suppresses immune responses by reducing aggrecan cleavage, enhancing Treg function and adjusting the Treg:Th17 ratio. CM-MSC may provide an effective cell-free therapy for inflammatory arthritis
Counteracting Quasispecies Adaptability: Extinction of a Ribavirin-Resistant Virus Mutant by an Alternative Mutagenic Treatment
[Background] Lethal mutagenesis, or virus extinction promoted by mutagen-induced elevation of mutation rates of viruses,
may meet with the problem of selection of mutagen-resistant variants, as extensively documented for standard, nonmutagenic
antiviral inhibitors. Previously, we characterized a mutant of foot-and-mouth disease virus that included in its
RNA-dependent RNA polymerase replacement M296I that decreased the sensitivity of the virus to the mutagenic nucleoside
analogue ribavirin.[Methodology and Principal Findings] Replacement M296I in the viral polymerase impedes the extinction of the mutant
foot-and-mouth disease virus by elevated concentrations of ribavirin. In contrast, wild type virus was extinguished by the
same ribavirin treatment and, interestingly, no mutants resistant to ribavirin were selected from the wild type populations.
Decreases of infectivity and viral load of the ribavirin-resistant M296I mutant were attained with a combination of the
mutagen 5-fluorouracil and the non-mutagenic inhibitor guanidine hydrocloride. However, extinction was achieved with a
sequential treatment, first with ribavirin, and then with a minimal dose of 5-fluorouracil in combination with guanidine
hydrochloride. Both, wild type and ribavirin-resistant mutant M296I exhibited equal sensitivity to this combination,
indicating that replacement M296I in the polymerase did not confer a significant cross-resistance to 5-fluorouracil. We
discuss these results in relation to antiviral designs based on lethal mutagenesis[Conclusions] (i) When dominant in the population, a mutation that confers partial resistance to a mutagenic agent can
jeopardize virus extinction by elevated doses of the same mutagen. (ii) A wild type virus, subjected to identical high
mutagenic treatment, need not select a mutagen-resistant variant, and the population can be extinguished. (iii) Extinction
of the mutagen-resistant variant can be achieved by a sequential treatment of a high dose of the same mutagen, followed
by a combination of another mutagen with an antiviral inhibitor.Work supported by grants BFU2005-00863, BFU2008-02816/BMC, Proyecto Intramural de Frontera del CSIC 200820FO191, FIPSE 36558/06, and
Fundacio´n Ramo´n Areces. CIBERehd is funded by Instituto de Salud Carlos III. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscriptPeer reviewe
Mechanical properties measured by Atomic Force Microscopy define health biomarkers in ageing C. elegans
Genetic and environmental factors are key drivers regulating organismal lifespan but how these impact healthspan is less well understood. Techniques capturing biomechanical properties of tissues on a nano-scale level are providing new insights into disease mechanisms. Here, we apply Atomic Force Microscopy (AFM) to quantitatively measure the change in biomechanical properties associated with ageing Caenorhabditis elegans in addition to capturing high-resolution topographical images of cuticle senescence. We show that distinct dietary restriction regimes and genetic pathways that increase lifespan lead to radically different healthspan outcomes. Hence, our data support the view that prolonged lifespan does not always coincide with extended healthspan. Importantly, we identify the insulin signalling pathway in C. elegans and interventions altering bacterial physiology as increasing both lifespan and healthspan. Overall, AFM provides a highly sensitive technique to measure organismal biomechanical fitness and delivers an approach to screen for health-improving conditions, an essential step towards healthy ageing
High-throughput profiling of caenorhabditis elegans starvation-responsive microRNAs
MicroRNAs (miRNAs) are non-coding RNAs of ~22 nucleotides in length that regulate gene expression by interfering with the stability and translation of mRNAs. Their expression is regulated during development, under a wide variety of stress conditions and in several pathological processes. In nature, animals often face feast or famine conditions. We observed that subjecting early L4 larvae from Caenorhabditis elegans to a 12-hr starvation period produced worms that are thinner and shorter than well-fed animals, with a decreased lipid accumulation, diminished progeny, reduced gonad size, and an increased lifespan. Our objective was to identify which of the 302 known miRNAs of C. elegans changed their expression under starvation conditions as compared to well-fed worms by means of deep sequencing in early L4 larvae. Our results indicate that 13 miRNAs (miR-34-3p, the family of miR-35-3p to miR-41-3p, miR-39-5p, miR-41-5p, miR-240-5p, miR-246-3p and miR-4813-5p) were upregulated, while 2 miRNAs (let-7-3p and miR-85-5p) were downregulated in 12-hr starved vs. well-fed early L4 larvae. Some of the predicted targets of the miRNAs that changed their expression in starvation conditions are involved in metabolic or developmental process. In particular, miRNAs of the miR-35 family were upregulated 6-20 fold upon starvation. Additionally, we showed that the expression of gld-1, important in oogenesis, a validated target of miR-35-3p, was downregulated when the expression of miR-35-3p was upregulated. The expression of another reported target, the cell cycle regulator lin-23, was unchanged during starvation. This study represents a starting point for a more comprehensive understanding of the role of miRNAs during starvation in C. elegans
FICD acts bifunctionally to AMPylate and de-AMPylate the endoplasmic reticulum chaperone BiP
Protein folding homeostasis in the endoplasmic reticulum (ER) is defended by an unfolded protein response that matches ER chaperone capacity to the burden of unfolded proteins. As levels of unfolded proteins decline, a metazoan-specific FIC-domain-containing ER-localized enzyme (FICD) rapidly inactivates the major ER chaperone BiP by AMPylating T518. Here we show that the single catalytic domain of FICD can also release the attached AMP, restoring functionality to BiP. Consistent with a role for endogenous FICD in de-AMPylating BiP, FICD hamster cells are hypersensitive to introduction of a constitutively AMPylating, de-AMPylation-defective mutant FICD. These opposing activities hinge on a regulatory residue, E234, whose default state renders FICD a constitutive de-AMPylase . The location of E234 on a conserved regulatory helix and the mutually antagonistic activities of FICD , suggest a mechanism whereby fluctuating unfolded protein load actively switches FICD from a de-AMPylase to an AMPylase.Supported by Wellcome Trust Principal Research Fellowship to D.R. (Wellcome 200848/Z/16/Z), a UK Medical Research Council PhD studentship to L.A.P. and a Wellcome Trust Strategic Award to the Cambridge Institute for Medical Research (Wellcome 100140)
- …