62 research outputs found

    Implementation of electroweak corrections in the POWHEG BOX: single W production

    Get PDF
    We present a fully consistent implementation of electroweak and strong radiative corrections to single W hadroproduction in the POWHEG BOX framework, treating soft and collinear photon emissions on the same ground as coloured parton emissions. This framework can be easily extended to more complex electroweak processes. We describe how next-to-leading order (NLO) electroweak corrections are combined with the NLO QCD calculation, and show how they are interfaced to QCD and QED shower Monte Carlo. The resulting tool fills a gap in the literature and allows to study comprehensively the interplay of QCD and electroweak effects to W production using a single computational framework. Numerical comparisons with the predictions of the electroweak generator HORACE, as well as with existing results on the combination of electroweak and QCD corrections to W production, are shown for the LHC energies, to validate the reliability and accuracy of the approachComment: 31 pages, 7 figures. Minor corrections, references added and updated. Final version to appear in JHE

    Antenna subtraction with massive fermions at NNLO: Double real initial-final configurations

    Full text link
    We derive the integrated forms of specific initial-final tree-level four-parton antenna functions involving a massless initial-state parton and a massive final-state fermion as hard radiators. These antennae are needed in the subtraction terms required to evaluate the double real corrections to ttˉt\bar{t} hadronic production at the NNLO level stemming from the partonic processes qqˉ→ttˉq′qˉ′q\bar{q}\to t\bar{t}q'\bar{q}' and gg→ttˉqqˉgg\to t\bar{t}q\bar{q}.Comment: 24 pages, 1 figure, 1 Mathematica file attache

    Antenna subtraction for gluon scattering at NNLO

    Full text link
    We use the antenna subtraction method to isolate the double real radiation infrared singularities present in gluonic scattering amplitudes at next-to-next-to-leading order. The antenna subtraction framework has been successfully applied to the calculation of NNLO corrections to the 3-jet cross section and related event shape distributions in electron-positron annihilation. Here we consider processes with two coloured particles in the initial state, and in particular two-jet production at hadron colliders such as the Large Hadron Collider (LHC). We construct a subtraction term that describes the single and double unresolved contributions from the six-gluon tree-level process using antenna functions with initial state partons and show numerically that the subtraction term correctly approximates the matrix elements in the various single and double unresolved configurations.Comment: 71 pages, JHEP3 class; corrected typos, equivalent but more compact version of eq. (5.12), results unchange

    Regularization-scheme dependence of QCD amplitudes in the massive case

    Get PDF
    We investigate QCD amplitudes with massive quarks computed in the four-dimensional helicity scheme (FDH) and dimensional reduction at NNLO and describe how they are related to the corresponding amplitudes computed in conventional dimensional regularization. To this end, the scheme dependence of the heavy quark and the velocity-dependent cusp anomalous dimensions is determined using soft-collinear effective theory. The results are checked against explicit computations of massive form factors in FDH at NNLO. Our results complete the description of the scheme dependence of QCD amplitudes at NNLO

    Age-Related Memory Impairment Is Associated with Disrupted Multivariate Epigenetic Coordination in the Hippocampus

    Get PDF
    Mounting evidence linking epigenetic regulation to memory-related synaptic plasticity raises the possibility that altered chromatin modification dynamics might contribute to age-dependent cognitive decline. Here we show that the coordinated orchestration of both baseline and experience-dependent epigenetic regulation seen in the young adult hippocampus is lost in association with cognitive aging. Using a well-characterized rat model that reliably distinguishes aged individuals with significant memory impairment from others with normal memory, no single epigenetic mark or experience-dependent modification in the hippocampus uniquely predicted differences in the cognitive outcome of aging. The results instead point to a multivariate pattern in which modification-specific, bidirectional chromatin regulation is dependent on recent behavioral experience, chronological age, cognitive status, and hippocampal region. Whereas many epigenetic signatures were coupled with memory capacity among young adults and aged rats with preserved cognitive function, such associations were absent among aged rats with deficits in hippocampal memory. By comparison with the emphasis in current preclinical translational research on promoting chromatin modifications permissive for gene expression, our findings suggest that optimally successful hippocampal aging may hinge instead on enabling coordinated control across the epigenetic landscape

    Higgs boson gluon-fusion production beyond threshold in N3LO QCD

    Get PDF
    In this article, we compute the gluon fusion Higgs boson cross-section at N3LO through the second term in the threshold expansion. This calculation constitutes a major milestone towards the full N3LO cross section. Our result has the best formal accuracy in the threshold expansion currently available, and includes contributions from collinear regions besides subleading corrections from soft and hard regions, as well as certain logarithmically enhanced contributions for general kinematics. We use our results to perform a critical appraisal of the validity of the threshold approximation at N3LO in perturbative QCD

    Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations

    Full text link
    The antenna subtraction method handles real radiation contributions in higher order corrections to jet observables. The method is based on antenna functions, which encapsulate all unresolved radiation between a pair of hard radiator partons. To apply this method to compute hadron collider observables, initial-initial antenna functions with both radiators in the initial state are required. In view of extending the antenna subtraction method to next-to-next-to-leading order (NNLO) calculations at hadron colliders, we derive the one-loop initial-initial antenna functions in unintegrated and integrated form.Comment: 24 page
    • …
    corecore