23 research outputs found

    Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains

    Get PDF
    The transfer of organic carbon from the terrestrial biosphere to the oceans via erosion and riverine transport constitutes an important component of the global carbon cycle. More than one third of this organic carbon flux comes from sediment-laden rivers that drain the mountains in the western Pacific region. This region is prone to tropical cyclones, but their role in sourcing and transferring vegetation and soil is not well constrained. Here we measure particulate organic carbon load and composition in the LiWu River, Taiwan, during cyclone-triggered floods. We correct for fossil particulate organic carbon using radiocarbon, and find that the concentration of particulate organic carbon from vegetation and soils is positively correlated with water discharge. Floods have been shown to carry large amounts of clastic sediment. Non-fossil particulate organic carbon transported at the same time may be buried offshore under high rates of sediment accumulation. We estimate that on decadal timescales, 77–92% of non-fossil particulate organic carbon eroded from the LiWu catchment is transported during large, cyclone-induced floods. We suggest that tropical cyclones, which affect many forested mountains within the Intertropical Convergence Zone, may provide optimum conditions for the delivery and burial of non-fossil particulate organic carbon in the ocean. This carbon transfer is moderated by the frequency, intensity and duration of tropical cyclones

    A cognitive framework for explaining serial processing and sequence execution strategies

    No full text

    Functional dissection of Caenorhabditis elegans CLK-2/TEL2 cell cycle defects during embryogenesis and germline development

    Get PDF
    CLK-2/TEL2 is essential for viability from yeasts to vertebrates, but its essential functions remain ill defined. CLK-2/TEL2 was initially implicated in telomere length regulation in budding yeast, but work in Caenorhabditis elegans has uncovered a function in DNA damage response signalling. Subsequently, DNA damage signalling defects associated with CLK-2/TEL2 have been confirmed in yeast and human cells. The CLK-2/TEL2 interaction with the ATM and ATR DNA damage sensor kinases and its requirement for their stability led to the proposal that CLK-2/TEL2 mutants might phenocopy ATM and/or ATR depletion. We use C. elegans to dissect developmental and cell cycle related roles of CLK-2. Temperature sensitive (ts) clk-2 mutants accumulate genomic instability and show a delay of embryonic cell cycle timing. This delay partially depends on the worm p53 homolog CEP-1 and is rescued by co-depletion of the DNA replication checkpoint proteins ATL-1 (C. elegans ATR) and CHK-1. In addition, clk-2 ts mutants show a spindle orientation defect in the eight cell stages that lead to major cell fate transitions. clk-2 deletion worms progress through embryogenesis and larval development by maternal rescue but become sterile and halt germ cell cycle progression. Unlike ATL-1 depleted germ cells, clk-2–null germ cells do not accumulate DNA double-strand breaks. Rather, clk-2 mutant germ cells arrest with duplicated centrosomes but without mitotic spindles in an early prophase like stage. This germ cell cycle arrest does not depend on cep-1, the DNA replication, or the spindle checkpoint. Our analysis shows that CLK-2 depletion does not phenocopy PIKK kinase depletion. Rather, we implicate CLK-2 in multiple developmental and cell cycle related processes and show that CLK-2 and ATR have antagonising functions during early C. elegans embryonic development
    corecore