25 research outputs found

    Forever connected: the lifelong biological consequences of fetomaternal and maternofetal microchimerism

    Get PDF
    BACKGROUND: Originally studied as a mechanism to understand eclampsia-related deaths during pregnancy, fetal cells in maternal blood have more recently garnered attention as a noninvasive source of fetal material for prenatal testing. In the 21st century, however, intact fetal cells have been largely supplanted by circulating cell-free placental DNA for aneuploidy screening. Instead, interest has pivoted to the ways in which fetal cells influence maternal biology. In parallel, an increasing appreciation of the consequences of maternal cells in the developing fetus has occurred.CONTENT: In this review, we highlight the potential clinical applications and functional consequences of the bidirectional trafficking of intact cells between a pregnant woman and her fetus. Fetal cells play a potential role in the pathogenesis of maternal disease and tissue repair. Maternal cells play an essential role in educating the fetal immune system and as a factor in transplant acceptance. Naturally occurring maternal microchimerism is also being explored as a source of hematopoietic stem cells for transplant in fetal hematopoietic disorders.SUMMARY: Future investigations in humans need to include complete pregnancy histories to understand maternal health and transplant success or failure. Animal models are useful to understand the mechanisms underlying fetal wound healing and/or repair associated with maternal injury and inflammation. The lifelong consequences of the exchange of cells between a mother and her child are profound and have many applications in development, health, and disease. This intricate exchange of genetically foreign cells creates a permanent connection that contributes to the survival of both individuals.IP2Immunopathology of vascular and renal diseases and of organ and celltransplantatio

    Assessing institutional relations in development partnerships: the Land Development Corporation and the Hong Kong Government prior to 1997

    Get PDF
    This paper interprets and develops contemporary notions of partnership in relation to Hong Kong's Land Development Corporation. It demonstrates how such agencies are likely to become overdependent on their private-sector partners or ineffective in policy delivery, unless endowed with adequate powers and resources. In this context, it suggests that the LDC's capacity to promote urban renewal was undermined particularly by the institutional requirement to assemble redevelopment sites in multiple ownership principally through negotiation. While seeking to explain this weakness in relation to the socio-cultural context of Hong Kong, it warns that, in applying the Western experience of partnership elsewhere, full account must be taken of local circumstances and constraints

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Deriving new mixing ratios for Venus atmospheric gases using data from the Pioneer Venus Large Probe Neutral Mass Spectrometer

    No full text
    We present the first published method to convert data obtained by the Pioneer Venus Large Probe Neutral Mass Spectrometer (LNMS) into units of mixing ratio (ppm) and volume percent (v%) against CO2 and N2, the dominant Venus atmospheric gases, including conversion to density (kg m−3). These unit conversions are key to unlocking the untapped potential of the data, which represents a significant challenge given the scant calibration data in the literature. Herein, we show that our data treatments and conversions yield mixing ratios and volume percent values for H2O, N2, and SO2 that are within error to those reported for the gas chromatograph (LGC) on the Pioneer Venus Large Probe (PVLP). For the noble gases, we developed strategies to correct for instrument biases by treating the data as a relative scale and using PVLP and Venera-based measurements as calibration points. Together, these methods, conversions, calibrations, and comparisons afford novel unit conversions for the LNMS data and yield unified measures for Venus’ atmosphere from the LNMS and LGC on the PVLP. ‱ Conversion into mixing ratio (ppm), volume percent (v%), and density (kg m−3). ‱ Mixing ratios are expressed against CO2 and N2. ‱ LNMS and LGC measurements on the PVLP are consistent

    A field guide to cultivating computational biology.

    No full text
    Evo:lvPinlegaisnecsoynnfcirwmitthhatthalelhceoamdipnugtleavtieolnsarreevreopluretisoenntoevdecor rtrheectplya:st 30 years, computational biology has emerged as a mature scientific field. While the field has made major contributions toward improving scientific knowledge and human health, individual computational biology practitioners at various institutions often languish in career development. As optimistic biologists passionate about the future of our field, we propose solutions for both eager and reluctant individual scientists, institutions, publishers, funding agencies, and educators to fully embrace computational biology. We believe that in order to pave the way for the next generation of discoveries, we need to improve recognition for computational biologists and better align pathways of career success with pathways of scientific progress. With 10 outlined steps, we call on all adjacent fields to move away from the traditional individual, single-discipline investigator research model and embrace multidisciplinary, data-driven, team science
    corecore