21,707 research outputs found
Exploiting the Design Freedom of RM
This paper details how Rapid Manufacturing (RM) can overcome the restrictions imposed by the
inherent process limitations of conventional manufacturing techniques and become the enabling
technology in fabricating optimal products. A new design methodology capable of exploiting
RM’s increased design freedom is therefore needed. Inspired by natural world structures of trees
and bones, a multi-objective, genetic algorithm based topology optimisation approach is
presented. This combines multiple unit cell structures and varying volume fractions to create a
heterogeneous part structure which exhibits a uniform stress distribution.Mechanical Engineerin
Synchronization is optimal in non-diagonalizable networks
We consider the problem of maximizing the synchronizability of oscillator
networks by assigning weights and directions to the links of a given
interaction topology. We first extend the well-known master stability formalism
to the case of non-diagonalizable networks. We then show that, unless some
oscillator is connected to all the others, networks of maximum
synchronizability are necessarily non-diagonalizable and can always be obtained
by imposing unidirectional information flow with normalized input strengths.
The extension makes the formalism applicable to all possible network
structures, while the maximization results provide insights into hierarchical
structures observed in complex networks in which synchronization plays a
significant role.Comment: 4 pages, 1 figure; minor revisio
Inside Money, Procyclical Leverage, and Banking Catastrophes
We explore a model of the interaction between banks and outside investors in
which the ability of banks to issue inside money (short-term liabilities
believed to be convertible into currency at par) can generate a collapse in
asset prices and widespread bank insolvency. The banks and investors share a
common belief about the future value of certain long-term assets, but they have
different objective functions; changes to this common belief result in
portfolio adjustments and trade. Positive belief shocks induce banks to buy
risky assets from investors, and the banks finance those purchases by issuing
new short-term liabilities. Negative belief shocks induce banks to sell assets
in order to reduce their chance of insolvency to a tolerably low level, and
they supply more assets at lower prices, which can result in multiple
market-clearing prices. A sufficiently severe negative shock causes the set of
equilibrium prices to contract (in a manner given by a cusp catastrophe),
causing prices to plummet discontinuously and banks to become insolvent.
Successive positive and negative shocks of equal magnitude do not cancel;
rather, a banking catastrophe can occur even if beliefs simply return to their
initial state. Capital requirements can prevent crises by curtailing the
expansion of balance sheets when beliefs become more optimistic, but they can
also force larger price declines. Emergency asset price supports can be
understood as attempts by a central bank to coordinate expectations on an
equilibrium with solvency.Comment: 31 pages, 10 figure
Dynamics of opinion formation in a small-world network
The dynamical process of opinion formation within a model using a local
majority opinion updating rule is studied numerically in networks with the
small-world geometrical property. The network is one in which shortcuts are
added to randomly chosen pairs of nodes in an underlying regular lattice. The
presence of a small number of shortcuts is found to shorten the time to reach a
consensus significantly. The effects of having shortcuts in a lattice of fixed
spatial dimension are shown to be analogous to that of increasing the spatial
dimension in regular lattices. The shortening of the consensus time is shown to
be related to the shortening of the mean shortest path as shortcuts are added.
Results can also be translated into that of the dynamics of a spin system in a
small-world network.Comment: 10 pages, 5 figure
Optimized bolted joint
A method is disclosed for joining segments of the skin of an aircraft. The ends of the skin are positioned in close proximity or abutt each other. The skin is of constant thickness throughout the joint and is sandwiched between splice plates, which taper in thickness from the last to the first bolt rows in order to reduce the stiffness of the splice plate and thereby reduce the load transfer at the location where bypass loads are the highest
Identity and Search in Social Networks
Social networks have the surprising property of being "searchable": Ordinary
people are capable of directing messages through their network of acquaintances
to reach a specific but distant target person in only a few steps. We present a
model that offers an explanation of social network searchability in terms of
recognizable personal identities: sets of characteristics measured along a
number of social dimensions. Our model defines a class of searchable networks
and a method for searching them that may be applicable to many network search
problems, including the location of data files in peer-to-peer networks, pages
on the World Wide Web, and information in distributed databases.Comment: 4 page, 3 figures, revte
Are Big Gods a big deal in the emergence of big groups?
In Big Gods, Norenzayan (2013) presents the most comprehensive treatment yet of the Big Gods question. The book is a commendable attempt to synthesize the rapidly growing body of survey and experimental research on prosocial effects of religious primes together with cross-cultural data on the distribution of Big Gods. There are, however, a number of problems with the current cross-cultural evidence that weaken support for a causal link between big societies and certain types of Big Gods. Here we attempt to clarify these problems and, in so doing, correct any potential misinterpretation of the cross-cultural findings, provide new insight into the processes generating the patterns observed, and flag directions for future research
Scale-free networks with tunable degree distribution exponents
We propose and study a model of scale-free growing networks that gives a
degree distribution dominated by a power-law behavior with a model-dependent,
hence tunable, exponent. The model represents a hybrid of the growing networks
based on popularity-driven and fitness-driven preferential attachments. As the
network grows, a newly added node establishes new links to existing nodes
with a probability based on popularity of the existing nodes and a
probability based on fitness of the existing nodes. An explicit form of
the degree distribution is derived within a mean field approach. For
reasonably large , , where the
function is dominated by the behavior of for small
values of and becomes -independent as , and is a
model-dependent exponent. The degree distribution and the exponent
are found to be in good agreement with results obtained by extensive numerical
simulations.Comment: 12 pages, 2 figures, submitted to PR
Geographical Coarsegraining of Complex Networks
We perform the renormalization-group-like numerical analysis of
geographically embedded complex networks on the two-dimensional square lattice.
At each step of coarsegraining procedure, the four vertices on each square box are merged to a single vertex, resulting in the coarsegrained
system of the smaller sizes. Repetition of the process leads to the observation
that the coarsegraining procedure does not alter the qualitative
characteristics of the original scale-free network, which opens the possibility
of subtracting a smaller network from the original network without destroying
the important structural properties. The implication of the result is also
suggested in the context of the recent study of the human brain functional
network.Comment: To appear in Phys. Rev. Let
- …