263 research outputs found

    A discrete chemo-dynamical model of the dwarf spheroidal galaxy Sculptor: mass profile, velocity anisotropy and internal rotation

    Get PDF
    We present a new discrete chemo-dynamical axisymmetric modeling technique, which we apply to the dwarf spheroidal galaxy Sculptor. The major improvement over previous Jeans models is that realistic chemical distributions are included directly in the dynamical modelling of the discrete data. This avoids loss of information due to spatial binning and eliminates the need for hard cuts to remove contaminants and to separate stars based on their chemical properties. Using a combined likelihood in position, metallicity and kinematics, we find that our models naturally separate Sculptor stars into a metal-rich and a metal-poor population. Allowing for non-spherical symmetry, our approach provides a central slope of the dark matter density of γ=0.5±0.3\gamma = 0.5 \pm 0.3. The metal-rich population is nearly isotropic (with βrred=0.0±0.1\beta_r^{red} = 0.0\pm0.1) while the metal-poor population is tangentially anisotropic (with βrblue=0.2±0.1\beta_r^{blue} = -0.2\pm0.1) around the half light radius of 0.260.26 kpc. A weak internal rotation of the metal-rich population is revealed with vmax/σ0=0.15±0.15v_{max}/\sigma_0 = 0.15 \pm 0.15. We run tests using mock data to show that a discrete dataset with 6000\sim 6000 stars is required to distinguish between a core (γ=0\gamma = 0) and cusp (γ=1\gamma = 1), and to constrain the possible internal rotation to better than 1σ1\,\sigma confidence with our model. We conclude that our discrete chemo-dynamical modelling technique provides a flexible and powerful tool to robustly constrain the internal dynamics of multiple populations, and the total mass distribution in a stellar system.Comment: Accepted by MNRA

    Regional libraries online project : Survey

    Get PDF
    The Library and Information Service of Western Australia (LISWA) implemented their Regional Libraries Online Project in 1997 to provide public Internet access to 11 regional libraries in Western Australia. This report highlights major trends and issues that arose during the implementation of the project..

    Microstructural and Chemical Characterization of a Purple Pigment from a Faiyum Mummy Portrait

    Get PDF
    Results are presented from analyses that were conducted to explain the presence of chromium, detected noninvasively using energy-dispersive X-ray fluorescence (XRF), in the unusually large (2-3mm diameter) rough gem-like purple pigment particles in the paint used for a Faiyum mummy portrait. An approximately 50 μm diameter particle of the chromium-containing purple pigment was extracted from the Portrait of a Bearded Man, dated to Roman Imperial Egypt in the second century, circa 170-180 CE, accession #32.6 in the Walters Art Museum collection. The particle was characterized using energy-dispersive X-ray fluorescence analysis, electron microscopy, diffraction, and atom probe tomography. It is demonstrated that the purple pigment particle is a heterogeneous organic pigment, specifically, a lake pigment likely derived from either plant or insect matter, which contains minor percentages of both transition metals and alkali / alkali earth metals, with nanometer-scale crystallites of lead carbonates and sulfates. The analyses revealed for the first time the nanoscale microstructure and stratigraphy in an ancient lake pigment. Results suggest that similarities with respect to time period and place of production may be developed among unprovenienced Faiyum mummy portraits to help localize workshops or artists, using analyses focused on lake pigments to characterize specifically metal-based mordants

    The central mass and mass-to-light profile of the Galactic globular cluster M15

    Get PDF
    We analyze line-of-sight velocity and proper motion data of stars in the Galactic globular cluster M15 using a new method to fit dynamical models to discrete kinematic data. Our fitting method maximizes the likelihood for individual stars and, as such, does not suffer the same loss of spatial and velocity information incurred when spatially binning data or measuring velocity moments. In this paper, we show that the radial variation in M15 of the mass-to-light ratio is consistent with previous estimates and theoretical predictions, which verifies our method. Our best-fitting axisymmetric Jeans models do include a central dark mass of 2±1103M\sim2 \pm 1\cdot 10^3M_\odot, which can be explained by a high concentration of stellar remnants at the cluster center. This paper shows that, from a technical point of view and with current computing power, spatial binning of data is no longer necessary. This not only leads to more accurate fits, but also avoids biased mass estimates due to the loss of resolution. Furthermore, we find that the mass concentration in M15 is significantly higher than previously measured, and is in close agreement with theoretical predictions for core-collapsed globular clusters without a central intermediate-mass black hole.Comment: Accepted by MNRAS; 8 pages, 7 figure

    Total mass slopes and enclosed mass constrained by globular cluster system dynamics

    Full text link
    The goal of this work is to probe the total mass distribution of early-type galaxies with globular clusters (GCs) as kinematic tracers, by constraining the parameters of the profile with a flexible modelling approach. To that end, we leverage the extended spatial distribution of GCs from the SLUGGS survey (RGC, max8Re\langle R_{\rm GC,\ max} \rangle \sim 8R_{\rm e}) in combination with discrete dynamical modelling. We use discrete Jeans anisotropic modelling in cylindrical coordinates to determine the velocity moments at the location of the GCs in our sample. We use a Bayesian framework to determine the best-fit parameters of the total mass density profile and orbital properties of the GC systems. We find that the orbital properties (anisotropy and rotation of the dispersion-dominated GC systems) minimally impact the measurements of the inner slope and enclosed mass, while a strong presence of dynamically-distinct subpopulations or low numbers of kinematic tracers can bias the results. Owing to the large spatial extent of the tracers our method is sensitive to the intrinsic inner slope of the total mass profile and we find α=1.88±0.01\overline{\alpha} = -1.88\pm 0.01 for 12 galaxies with robust measurements. To compare our results with literature values we fit a single power-law profile to the resulting total mass density. In the radial range 0.1-4~ReR_{\rm e} our measured slope has a value of γtot=2.22±0.14\langle \gamma_{\rm tot}\rangle = -2.22\pm0.14 and is in good agreement with the literature.Comment: 17 pages, 13 Figures, 8 Tables, Accepted for publication in A&

    Gene Combination Transfer to Block Autoimmune Damage in Transplanted Islets of Langerhans

    Get PDF
    Islet transplantation therapy would be applicable to a wider range of diabetic patients if donor islet acceptance and protection were possible without systemic immunosuppression of the recipient. To this aim, gene transfer to isolated donor islets ex vivo is one method that has shown promise. This study examines the combined effect of selected immunomodulatory and anti-inflammatory genes known to extend the functional viability of pancreatic islet grafts in an autoimmune system. These genes, indoleamine 2,3-dioxygenase (IDO), manganese superoxide dismutase (MnSOD), and interleukin (IL)-1 receptor antagonist protein (IRAP), were transferred to isolated NOD donor islets ex vivo then transplanted to NODscid recipients and evaluated in vivo after diabetogenic T-cell challenge. The length of time the recipient remained euglycemic was used to measure the ability of the transgenes to protect the graft from autoimmune destruction. Although the results of these cotransfections gave little evidence of a synergistic relationship, they were useful to show that gene combinations can be used to more efficiently protect islet grafts from diabetogenic T cells
    corecore