1,843 research outputs found

    Structure from motion photogrammetry in ecology: Does the choice of software matter?

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record.Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.q7c400k (Forsmoo et al., 2019).Image‐based modeling, and more precisely, Structure from Motion (SfM) and Multi‐View Stereo (MVS), is emerging as a flexible, self‐service, remote sensing tool for generating fine‐grained digital surface models (DSMs) in the Earth sciences and ecology. However, drone‐based SfM + MVS applications have developed at a rapid pace over the past decade and there are now many software options available for data processing. Consequently, understanding of reproducibility issues caused by variations in software choice and their influence on data quality is relatively poorly understood. This understanding is crucial for the development of SfM + MVS if it is to fulfill a role as a new quantitative remote sensing tool to inform management frameworks and species conservation schemes. To address this knowledge gap, a lightweight multirotor drone carrying a Ricoh GR II consumer‐grade camera was used to capture replicate, centimeter‐resolution image datasets of a temperate, intensively managed grassland ecosystem. These data allowed the exploration of method reproducibility and the impact of SfM + MVS software choice on derived vegetation canopy height measurement accuracy. The quality of DSM height measurements derived from four different, yet widely used SfM‐MVS software—Photoscan, Pix4D, 3DFlow Zephyr, and MICMAC, was compared with in situ data captured on the same day as image capture. We used both traditional agronomic techniques for measuring sward height, and a high accuracy and precision differential GPS survey to generate independent measurements of the underlying ground surface elevation. Using the same replicate image dataset (n = 3) as input, we demonstrate that there are 1.7, 2.0, and 2.5 cm differences in RMSE (excluding one outlier) between the outputs from different SfM + MVS software using High, Medium, and Low quality settings, respectively. Furthermore, we show that there can be a significant difference, although of small overall magnitude between replicate image datasets (n = 3) processed using the same SfM + MVS software, following the same workflow, with a variance in RMSE of up to 1.3, 1.5, and 2.7 cm (excluding one outlier) for “High,” “Medium,” and “Low” quality settings, respectively. We conclude that SfM + MVS software choice does matter, although the differences between products processed using “High” and “Medium” quality settings are of small overall magnitude.James Hutton InstituteUniversity of Exete

    Antitumor Activity of Gold(I), Silver(I) and Copper(I) Complexes Containing Chiral Tertiary Phosphines

    Get PDF
    The in vitro cytotoxicities of a number of gold(I), silver(I) and copper(I) complexes containing chiral tertiary phosphine ligands have been examined against the mouse tumour cell lines P815 mastocytoma, B16 melanoma [gold(I) and silver(I) compounds] and P388 leukaemia [gold(I) complexes only] with many of the complexes having IC50 values comparable to that of the reference compounds cis-diamminedichloroplatinum(ll), cisplatin, and bis[1,2-bis(diphenylphosphino) ethane]gold(I) iodide. The chiral tertiary phosphine ligands used in this study include (R)-(2-aminophenyl)methylphenylphosphine; (R,R)-, (S,S)- and (R*,R*)-1,2-phenylenebis(methylphenylphosphine); and (R,R)-, (S,S)- and (R*,R*)-bis{(2-diphenylphosphinoethyl)phenylphosphino}ethane. The in vitro cytotoxicities of gold(I) and silver(I) complexes containing the optically active forms of the tetra(tertiary phosphine) have also been examined against the human ovarian carcinoma cell lines 41M and CH1, and the cisplatin resistant 41McisR, CH1cisR and SKOV-3 tumour models. IC50 values in the range 0.01 - 0.04 μM were determined for the most active compounds, silver(I) complexes of the tetra(tertiary phosphine). Furthermore, the chirality of the ligand appeared to have little effect on the overall activity of the complexes: similar IC50 data were obtained for complexes of a particular metal ion with each of the stereoisomeric forms of a specific ligand

    Multiple Field-Induced Phase Transitions in a Geometrically-Frustrated Dipolar Magnet - Gd2Ti2O7

    Full text link
    Field-driven phase transitions generally arise from competition between Zeeman energy and exchange or crystal-field anisotropy. Here we present the phase diagram of a frustrated pyrochlore magnet Gd2Ti2O7, where crystal field splitting is small compared to the dipolar energy. We find good agreement between zero-temperature critical fields and those obtained from a mean-field model. Here, dipolar interactions couple real-space and spin-space, so the transitions in Gd2Ti2O7 arise from field-induced "cooperative anisotropy" reflecting the broken spatial symmetries of the pyrochlore lattice.Comment: 10pages,5figures: pdf file attached PACS 75.30.Kz, 75.50.Ee, 75.10.-

    Probe dependency in the determination of ligand binding kinetics at a prototypical G protein-coupled receptor

    Get PDF
    © 2019, The Author(s). Drug-target binding kinetics are suggested to be important parameters for the prediction of in vivo drug-efficacy. For G protein-coupled receptors (GPCRs), the binding kinetics of ligands are typically determined using association binding experiments in competition with radiolabelled probes, followed by analysis with the widely used competitive binding kinetics theory developed by Motulsky and Mahan. Despite this, the influence of the radioligand binding kinetics on the kinetic parameters derived for the ligands tested is often overlooked. To address this, binding rate constants for a series of histamine H1 receptor (H1R) antagonists were determined using radioligands with either slow (low koff) or fast (high koff) dissociation characteristics. A correlation was observed between the probe-specific datasets for the kinetic binding affinities, association rate constants and dissociation rate constants. However, the magnitude and accuracy of the binding rate constant-values was highly dependent on the used radioligand probe. Further analysis using recently developed fluorescent binding methods corroborates the finding that the Motulsky-Mahan methodology is limited by the employed assay conditions. The presented data suggest that kinetic parameters of GPCR ligands depend largely on the characteristics of the probe used and results should therefore be viewed within the experimental context and limitations of the applied methodology

    Toxicogenomic Biomarkers for Liver Toxicity

    Get PDF
    Toxicogenomics (TGx) is a widely used technique in the preclinical stage of drug development to investigate the molecular mechanisms of toxicity. A number of candidate TGx biomarkers have now been identified and are utilized for both assessing and predicting toxicities. Further accumulation of novel TGx biomarkers will lead to more efficient, appropriate and cost effective drug risk assessment, reinforcing the paradigm of the conventional toxicology system with a more profound understanding of the molecular mechanisms of drug-induced toxicity. In this paper, we overview some practical strategies as well as obstacles for identifying and utilizing TGx biomarkers based on microarray analysis. Since clinical hepatotoxicity is one of the major causes of drug development attrition, the liver has been the best documented target organ for TGx studies to date, and we therefore focused on information from liver TGx studies. In this review, we summarize the current resources in the literature in regard to TGx studies of the liver, from which toxicologists could extract potential TGx biomarker gene sets for better hepatotoxicity risk assessment
    corecore