156 research outputs found

    Impact of detecting potentially serious incidental findings during multi-modal imaging [version 3; peer review: 2 approved, 1 approved with reservations]

    Get PDF
    Background: There are limited data on the impact of feedback of incidental findings (IFs) from research imaging.  We evaluated the impact of UK Biobank's protocol for handling potentially serious IFs in a multi-modal imaging study of 100,000 participants (radiographer 'flagging' with radiologist confirmation of potentially serious IFs) compared with systematic radiologist review of all images. Methods: Brain, cardiac and body magnetic resonance, and dual-energy x-ray absorptiometry scans from the first 1000 imaged UK Biobank participants were independently assessed for potentially serious IFs using both protocols. We surveyed participants with potentially serious IFs and their GPs up to six months after imaging to determine subsequent clinical assessments, final diagnoses, emotional, financial and work or activity impacts. Results: Compared to systematic radiologist review, radiographer flagging resulted in substantially fewer participants with potentially serious IFs (179/1000 [17.9%] versus 18/1000 [1.8%]) and a higher proportion with serious final diagnoses (21/179 [11.7%] versus 5/18 [27.8%]). Radiographer flagging missed 16/21 serious final diagnoses (i.e., false negatives), while systematic radiologist review generated large numbers of non-serious final diagnoses (158/179) (i.e., false positives). Almost all (90%) participants had further clinical assessment (including invasive procedures in similar numbers with serious and non-serious final diagnoses [11 and 12 respectively]), with additional impact on emotional wellbeing (16.9%), finances (8.9%), and work or activities (5.6%). Conclusions: Compared with systematic radiologist review, radiographer flagging missed some serious diagnoses, but avoided adverse impacts for many participants with non-serious diagnoses. While systematic radiologist review may benefit some participants, UK Biobank's responsibility to avoid both unnecessary harm to larger numbers of participants and burdening of publicly-funded health services suggests that radiographer flagging is a justifiable approach in the UK Biobank imaging study. The potential scale of non-serious final diagnoses raises questions relating to handling IFs in other settings, such as commercial and public health screening

    Lowering blood pressure after acute intracerebral haemorrhage: protocol for a systematic review and meta-analysis using individual patient data from randomised controlled trials participating in the Blood Pressure in Acute Stroke Collaboration (BASC)

    Get PDF
    INTRODUCTION: Conflicting results from multiple randomised trials indicate that the methods and effects of blood pressure (BP) reduction after acute intracerebral haemorrhage (ICH) are complex. The Blood pressure in Acute Stroke Collaboration is an international collaboration, which aims to determine the optimal management of BP after acute stroke including ICH. METHODS AND ANALYSIS: A systematic review will be undertaken according to the Preferred Reporting Items for Systematic review and Meta-Analysis of Individual Participant Data (IPD) guideline. A search of Cochrane Central Register of Controlled Trials, EMBASE and MEDLINE from inception will be conducted to identify randomised controlled trials of BP management in adults with acute spontaneous (non-traumatic) ICH enrolled within the first 7 days of symptom onset. Authors of studies that meet the inclusion criteria will be invited to share their IPD. The primary outcome will be functional outcome according to the modified Rankin Scale. Safety outcomes will be early neurological deterioration, symptomatic hypotension and serious adverse events. Secondary outcomes will include death and neuroradiological and haemodynamic variables. Meta-analyses of pooled IPD using the intention-to-treat dataset of included trials, including subgroup analyses to assess modification of the effects of BP lowering by time to treatment, treatment strategy and patient's demographic, clinical and prestroke neuroradiological characteristics. ETHICS AND DISSEMINATION: No new patient data will be collected nor is there any deviation from the original purposes of each study where ethical approvals were granted; therefore, further ethical approval is not required. Results will be reported in international peer-reviewed journals. PROSPERO REGISTRATION NUMBER: CRD42019141136

    Variance components associated with long-echo-time MR spectroscopic imaging in human brain at 1.5T and 3T

    Get PDF
    <div><p>Object</p><p>Magnetic resonance spectroscopic imaging (MRSI) is increasingly used in medicine and clinical research. Previous reliability studies have used small samples and focussed on limited aspects of variability; information regarding 1.5T versus 3T performance is lacking. The aim of the present work was to measure the inter-session, intra-session, inter-subject, within-brain and residual variance components using both 1.5T and 3T MR scanners.</p><p>Materials and methods</p><p>Eleven healthy volunteers were invited for MRSI scanning on three occasions at both 1.5T and 3T, with four scans acquired at each visit. We measured variance components, correcting for grey matter and white matter content of voxels, of metabolite peak areas and peak area ratios.</p><p>Results</p><p>Residual variance was in general the largest component at 1.5T (8.6–24.6%), while within-brain variation was the largest component at 3T (12.0–24.7%). Inter-subject variation was around 5%, while inter- and intra-session variance were both generally small.</p><p>Conclusion</p><p>Multiple variance contributions associated with MRSI measurements were quantified and the performance of 1.5T and 3T MRI scanners compared using data from the same group of subjects. Residual error is much lower at 3T, but other variance components remain important.</p></div

    Design and Validation of a Novel Method to Measure Cross-Sectional Area of Neck Muscles Included during Routine MR Brain Volume Imaging

    Get PDF
    Low muscle mass secondary to disease and ageing is an important cause of excess mortality and morbidity. Many studies include a MR brain scan but no peripheral measure of muscle mass. We developed a technique to measure posterior neck muscle cross-sectional area (CSA) on volumetric MR brain scans enabling brain and muscle size to be measured simultaneously.We performed four studies to develop and test: feasibility, inter-rater reliability, repeatability and external validity. We used T1-weighted MR brain imaging from young and older subjects, obtained on different scanners, and collected mid-thigh MR data.After developing the technique and demonstrating feasibility, we tested it for inter-rater reliability in 40 subjects. Intraclass correlation coefficients (ICC) between raters were 0.99 (95% confidence intervals (CI) 0.98-1.00) for the combined group (trapezius, splenius and semispinalis), 0.92 (CI 0.85-0.96) for obliquus and 0.92 (CI 0.85-0.96) for sternocleidomastoid. The first unrotated principal component explained 72.2% of total neck muscle CSA variance and correlated positively with both right (r = 0.52, p = .001) and left (r = 0.50, p = .002) grip strength. The 14 subjects in the repeatability study had had two MR brain scans on three different scanners. The ICC for between scanner variation for total neck muscle CSA was high at 0.94 (CI 0.86-0.98). The ICCs for within scanner variations were also high, with values of 0.95 (CI 0.86-0.98), 0.97 (CI 0.92-0.99) and 0.96 (CI 0.86-0.99) for the three scanners. The external validity study found a correlation coefficient for total thigh CSA and total neck CSA of 0.88.We present a feasible, valid and reliable method for measuring neck muscle CSA on T1-weighted MR brain scans. Larger studies are needed to validate and apply our technique with subjects differing in age, ethnicity and geographical location

    Prehospital transdermal glyceryl trinitrate in patients with ultra-acute presumed stroke (RIGHT-2): an ambulance-based, randomised, sham-controlled, blinded, phase 3 trial

    Get PDF
    Background High blood pressure is common in acute stroke and is a predictor of poor outcome; however, large trials of lowering blood pressure have given variable results, and the management of high blood pressure in ultra-acute stroke remains unclear. We investigated whether transdermal glyceryl trinitrate (GTN; also known as nitroglycerin), a nitric oxide donor, might improve outcome when administered very early after stroke onset. Methods We did a multicentre, paramedic-delivered, ambulance-based, prospective, randomised, sham-controlled, blinded-endpoint, phase 3 trial in adults with presumed stroke within 4 h of onset, face-arm-speech-time score of 2 or 3, and systolic blood pressure 120 mm Hg or higher. Participants were randomly assigned (1:1) to receive transdermal GTN (5 mg once daily for 4 days; the GTN group) or a similar sham dressing (the sham group) in UKbased ambulances by paramedics, with treatment continued in hospital. Paramedics were unmasked to treatment, whereas participants were masked. The primary outcome was the 7-level modified Rankin Scale (mRS; a measure of functional outcome) at 90 days, assessed by central telephone follow-up with masking to treatment. Analysis was hierarchical, first in participants with a confirmed stroke or transient ischaemic attack (cohort 1), and then in all participants who were randomly assigned (intention to treat, cohort 2) according to the statistical analysis plan. This trial is registered with ISRCTN, number ISRCTN26986053. Findings Between Oct 22, 2015, and May 23, 2018, 516 paramedics from eight UK ambulance services recruited 1149 participants (n=568 in the GTN group, n=581 in the sham group). The median time to randomisation was 71 min (IQR 45–116). 597 (52%) patients had ischaemic stroke, 145 (13%) had intracerebral haemorrhage, 109 (9%) had transient ischaemic attack, and 297 (26%) had a non-stroke mimic at the final diagnosis of the index event. In the GTN group, participants’ systolic blood pressure was lowered by 5·8 mm Hg compared with the sham group (p<0·0001), and diastolic blood pressure was lowered by 2·6 mm Hg (p=0·0026) at hospital admission. We found no difference in mRS between the groups in participants with a final diagnosis of stroke or transient ischaemic stroke (cohort 1): 3 (IQR 2–5; n=420) in the GTN group versus 3 (2–5; n=408) in the sham group, adjusted common odds ratio for poor outcome 1·25 (95% CI 0·97–1·60; p=0·083); we also found no difference in mRS between all patients (cohort 2: 3 [2–5]; n=544, in the GTN group vs 3 [2–5]; n=558, in the sham group; 1·04 [0·84–1·29]; p=0·69). We found no difference in secondary outcomes, death (treatment-related deaths: 36 in the GTN group vs 23 in the sham group [p=0·091]), or serious adverse events (188 in the GTN group vs 170 in the sham group [p=0·16]) between treatment groups. Interpretation Prehospital treatment with transdermal GTN does not seem to improve functional outcome in patients with presumed stroke. It is feasible for UK paramedics to obtain consent and treat patients with stroke in the ultraacute prehospital setting

    Enumeration of islets by nuclei counting and light microscopic analysis

    Get PDF
    Author Manuscript 2011 May 1.Islet enumeration in impure preparations by conventional dithizone staining and visual counting is inaccurate and operator dependent. We examined nuclei counting for measuring the total number of cells in islet preparations, and we combined it with morphological analysis by light microscopy (LM) for estimating the volume fraction of islets in impure preparations. Cells and islets were disrupted with lysis solution and shear, and accuracy of counting successively diluted nuclei suspensions was verified with (1) visual counting in a hemocytometer after staining with crystal violet, and automatic counting by (2) aperture electrical resistance measurement and (3) flow cytometer measurement after staining with 7-aminoactinomycin-D. DNA content averaged 6.5 and 6.9 pg of DNA per cell for rat and human islets, respectively, in agreement with literature estimates. With pure rat islet preparations, precision improved with increasing counts, and samples with about greater than or equal to 160 islets provided a coefficient of variation of about 6%. Aliquots of human islet preparations were processed for LM analysis by stereological point counting. Total nuclei counts and islet volume fraction from LM analysis were combined to obtain the number of islet equivalents (IEs). Total number of IE by the standard method of dithizone staining/manual counting was overestimated by about 90% compared with LM/nuclei counting for 12 freshly isolated human islet research preparations. Nuclei counting combined with islet volume fraction measurements from LM is a novel method for achieving accurate islet enumeration.National Institutes of Health (U.S.) (Grant NCRR ICR U4Z 16606)National Institutes of Health (U.S.) (Grant R01-DK063108-01A1)National Institutes of Health (U.S.) (Grant NCRR ICR U42 RR0023244-01)Joslin Diabetes and Endocrinology Research Center (Grant DK36836)Diabetes Research & Wellness FoundationJuvenile Diabetes Research Foundation International (Islet Transplantation, Harvard Medical School

    Chemokines and their role in airway hyper-reactivity

    Get PDF
    Airway hyper-reactivity is a characteristic feature of many inflammatory lung diseases and is defined as an exaggerated degree of airway narrowing. Chemokines and their receptors are involved in several pathological processes that are believed to contribute to airway hyper-responsiveness, including recruitment and activation of inflammatory cells, collagen deposition and airway wall remodeling. These proteins are therefore thought to represent important therapeutic targets in the treatment of airway hyper-responsiveness. This review highlights the processes thought to be involved in airway hyper-responsiveness in allergic asthma, and the role of chemokines in these processes. Overall, the application of chemokines to the prevention or treatment of airway hyper-reactivity has tremendous potential

    Use of brain MRI atlases to determine boundaries of age-related pathology: the importance of statistical method

    Get PDF
    Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient's brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ± standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer's disease (AD) patients.Using publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55-90 years), we created: a mean ± SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients.The parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25-45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes.To our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we conclude that the statistical method used for construction of brain MRI atlases should be selected taking into account the population and aim under study. Parametric methods are generally robust for defining central tendencies, e.g., means, of brain structure. Nonparametric methods are advisable when studying the limits of brain structure in ageing and neurodegenerative disease
    • …
    corecore