11 research outputs found

    EXCHANGE ANISOTROPY OF Co-CoO PERPENDICULAR MAGNETIC FILMS

    No full text

    STUDYING ON LIGHT RARE EARTH NdFe(X) PERPENDICULAR MAGNETIZATION FILMS

    No full text

    Phase Transition of a Quaternary Ammonium Gemini Surfactant Induced by Minor Structural Changes of Protic Ionic Liquids

    No full text
    The aggregation behaviors of a Gemini surfactant [C<sub>12</sub>H<sub>25</sub>(CH<sub>3</sub>)<sub>2</sub>N<sup>+</sup>(CH<sub>2</sub>)<sub>2</sub>N<sup>+</sup>(CH<sub>3</sub>)<sub>2</sub>C<sub>12</sub>H<sub>25</sub>]­Br<sub>2</sub><sup>–</sup> (12-2-12) in two protic ionic liquids (PILs), propylammonium nitrate (PAN) and butylammonium nitrate (BAN), were investigated by means of several experimental techniques including small and wide-angle X-ray scattering, the polarized optical microscopy and the rheological measurement. Compared to those in ethylammonium nitrate (EAN), the minor structural changes with only one or two methylene units (−CH<sub>2</sub>−) increase in cationic chain length of PIL, result in a dramatic phase transition of formed aggregates. The critical micellization concentration was increased in PAN, while no micelle formation was detected in BAN. A normal hexagonal phase was observed in the 12-2-12/PAN system, while the normal hexagonal, bicontinuous cubic, and lamellar phases were mapped in the 12-2-12/BAN system. Such aggregation behavior changes can be ascribed to the weaker solvophobic interactions of 12-2-12 in PAN and BAN. The unique molecular structure of 12-2-12 is also an important factor to highlight such a dramatic phase transition due to the PIL structure change

    Unique Phase Behaviors in the Gemini Surfactant/EAN Binary System: The Role of the Hydroxyl Group

    No full text
    The hydroxyl group in the spacer of a cationic Gemini surfactant (12-3OH-12) caused dramatic changes of the phase behaviors in a protic ionic liquid (EAN). Here, the effects of the hydroxyl group on micellization and lyotropic liquid crystal formation were investigated through the surface tension, small-angle X-ray scattering, polarized optical microscopy, and rheological measurements. With the hydroxyl group in the spacer, the critical micellization concentration of 12-3OH-12 was found to be lower than that of the homologue without hydroxyl (12-3-12) and the 12-3OH-12 molecules packed more densely at the air/EAN interface. It was then interesting to observe a coexistence of two separated phases at wide concentration and temperature ranges in this 12-3OH-12/EAN system. Such a micellar phase separation was rarely observed in the ionic surfactant binary system. With the increase of surfactant concentration, the reverse hexagonal and bicontinuous cubic phases appeared in sequence, whereas only a reverse hexagonal phase was found in 12-3-12/EAN system. But, the hexagonal phases formed with 12-3OH-12 exhibited lower viscoelasticity and thermostability than those observed in 12-3-12/EAN system. Such unique changes in phase behaviors of 12-3OH-12 were ascribed to their enhanced solvophilic interactions of 12-3OH-12 and relatively weak solvophobic interactions in EAN

    Unusual Aggregation Arrangement of Eu-Containing Polyoxometalate Hybrid in a Protic Ionic Liquid with Improved Luminescence Property

    No full text
    Hybridization of polyoxometalates (POMs) with cationic surfactants offers the opportunity to greatly improve their functionalities as well as processabilities. Here, a surfactant-encapsulated Eu-containing POM complex (SEP) was formed via electrostatic interaction between 1-octadecyl-3-methylimidazolium bromide (OB) and Na<sub>9</sub>(EuW<sub>10</sub>O<sub>36</sub>)·32H<sub>2</sub>O (EuW<sub>10</sub>). SEP was first self-assembled in a protic ionic liquid to prepare the soft aggregates to fundamentally avoid the fluorescence quenching by water molecules. The structures and photophysical properties of SEP or aggregates were investigated thoroughly by NMR and FTIR spectroscopy, optical and electron microscopy, small-angle X-ray scattering, and fluorescence measurements. The formed gel-like aggregates were found to compose of three-dimensional networks of microribbons with an interdigitated layered molecular packing of SEP, which was different from the usual inverse bilayer model of POM hybrids in common organic solvents. Compared to EuW<sub>10</sub> solid or its aqueous solution, both SEP and its aggregates exhibited intense red luminescence with much improved lifetime and quantum efficiency. In addition, the soft aggregates exhibited an efficient energy transfer and an obviously enhanced monochromaticity, owning to the organized arrangement of EuW<sub>10</sub> units and a confined microenvironment to isolate them from each other between adjacent layers. The obtained results will not only present a useful reference to the aggregation behavior of POM hybrids in ionic liquids, but also provide an easy way to design EuW<sub>10</sub> luminescent soft materials based on the nonaqueous media
    corecore