3,148 research outputs found

    Magnetocrystalline Anisotropy Energy of a Transition Metal Monolayer: A Non-perturbative Theory

    Full text link
    The magnetocrystalline anisotropy energy EanisE_{anis} for a monolayer of Fe and Ni is determined using a fully convergent tight-binding calculation including ss-dd hybridization. The spin-orbit interaction λso\lambda_{so} is treated non-perturbatively. Remarkably, we find Eanisλso2E_{anis}\propto\lambda_{so}^2 and important contributions to EanisE_{anis} due to the lifting of degeneracies near the Fermi-level. This is supported by the calculated decrease of the anisotropy energy with increasing temperature on a scale of several hundred K. Our results clarify the present debate on the origin of EanisE_{anis}.Comment: 11 pages (RevTeX) with 2 figures, appended as Postscript file

    The Azimuthal Asymmetry at large p_t seem to be too large for a ``Jet Quenching''

    Full text link
    We discuss simple generic model of ``jet quenching'' in which matter absorption is defined by one parameter. We show that as absorption grows, the azimuthal asymmetry v_2 grows as well, reaching the finite limit with a simple geometric interpretation. It turns out, that this limit is still below the experimental values for 6 > p_t > 2 GeV, according to preliminary data from STAR experiment at RHIC. We thus conclude that ``jet quenching'' models alone cannot account for the observed phenomenon, and speculate about alternative scenarios.Comment: 3 pages, 2 figs, 1 table. The final version contaning note added in proofs for PRC, which reflects experimental development which seem to suggest that the geometrical model for v2 is in fact correct description of data at pt=2-10 Ge

    Molecular evidence of the haploid origin in wheat (Triticum aestivum L.) with Aegilops kotschyi cytoplasm and whole genome expression profiling after haploidization

    Get PDF
    Aegiolops kotschyi cytoplasmic male sterile system often results in part of haploid plants in wheat (Triticum aestivum L.). To elucidate the origin of haploid, 235 wheat microsatellite (SSR) primers were randomly selected and screened for polymorphism between haploid (2n = 3x = 21 ABD) and its parents, male-sterile line YM21 (2n = 6x = 42 AABBDD) and male fertile restorer YM2 (2n = 6x = 42 AABBDD). About 200 SSR markers yielded clear bands from denatured PAGE, of which 180 markers have identifiable amplification patterns, and 20 markers (around 8%) resulted in different amplification products between the haploid and the restorer, YM2. There were no SSR markers that were found to be distinguishable between the haploid and the male sterile line YM21. In addition, different distribution of HMW-GS between endosperm and seedlings from the same seeds further confirmed that the haploid genomes were inherited from the maternal parent. After haploidization, 1.7% and 0.91% of total sites were up- and down-regulated exceeding twofold in the shoot and the root of haploid, respectively, and most of the differentially expressed loci were up/down-regulated about twofold. Out of the sensitive loci in haploid, 94 loci in the shoot, 72 loci in the root can be classified into three functional subdivisions: biological process, cellular component and molecular function, respectively

    Optical Evidence of Multiphase Coexistence in Single Crystalline (La,Pr,Ca)MnO3

    Full text link
    We investigated temperature (T)- and magnetic field-dependent optical conductivity spectra (\s\w) of a La_5/8-yPr_yCa_3/8MnO_3 (y~0.35) single crystal, showing intriguing phase coexistence at low T. At T_C < T < T_CO, a dominant charge-ordered phase produces a large optical gap energy of ~0.4 eV. At T < T_C, at least two absorption bands newly emerge below 0.4 eV. Analyses of (\s\w) indicate that the new bands should be attributed to a ferromagnetic metallic and a charge-disordered phase that coexist with the charge-ordered phase. This optical study clearly shows that La_5/8-yPrCa_3/8MnO_3 (y~0.35) is composed of multiphases that might have different lattice strains.Comment: A single file with 9 figures embedded, to appear in Phys. Rev.

    Room temperature ferromagnetism in chemically synthesized ZnO rods

    Full text link
    We report structural and magnetic properties of pure ZnO rods using X-ray diffraction (XRD), magnetization hysteresis (M-H) loop and near edge x-ray fine structure spectroscopy (NEXAFS) study at O K edge. Sample of ZnO was prepared by co-precipitation method. XRD and selective area electron diffraction measurements infer that ZnO rods exhibit a single phase polycrystalline nature with wurtzite lattice. Field emission transmission electron microscopy, field emission scanning electron microscopy micrographs infers that ZnO have rod type microstructures with dimension 200 nm in diameter and 550 nm in length. M-H loop studies performed at room temperature display room temperature ferromagnetism in ZnO rods. NEXAFS study reflects absence of the oxygen vacancies in pure ZnO rods.Comment: 8 Pages, 3 Figure

    Muon spin relaxation study of the magnetism in unilluminated Prussian Blue analogue photomagnets

    Full text link
    We present longitudinal field muon spin relaxation (μ\muSR) measurements in the unilluminated state of the photo-sensitive molecular magnetic Co-Fe Prussian blue analogues M12x_{1-2x}Co1+x_{1+x}[Fe(CN)6_6]z\cdot z H2_2O, where M=K and Rb with x=0.4x=0.4 and 0.17\simeq 0.17, respectively. These results are compared to those obtained in the x=0.5x=0.5 stoichiometric limit, Co1.5_{1.5}[Fe(CN)6_6]6\cdot 6 H2_2O, which is not photo-sensitive. We find evidence for correlation between the range of magnetic ordering and the value of xx in the unilluminated state which can be explained using a site percolation model.Comment: 7 pages, 12 figure

    Distribution and Excretion of TEGDMA in Guinea Pigs and Mice

    Get PDF
    The monomer triethyleneglycoldimethacrylate (TEGDMA) is used as a diluent in many resin-based dental materials. It was previously shown in vitro that TEGDMA was released into the adjacent biophase from such materials during the first days after placement. In this study, the uptake, distribution, and excretion of 14C-TEGDMA applied via gastric, intradermal, and intravenous administration at dose levels well above those encountered in dental care were examined in vivo in guinea pigs and mice as a test of the hypothesis that TEGDMA reaches cytotoxic levels in mammalian tissues. 14C-TEGDMA was taken up rapidly from the stomach and small intestine after gastric administration in both species and was widely distributed in the body following administration by each route. Most 14C was excreted within one day as 14 CO2. The peak equivalent TEGDMA levels in all mouse and guinea pig tissues examined were at least 1000-fold less than known toxic levels. The study therefore did not support the hypothesis

    Nonstop: continuous multimedia streaming in wireless ad hoc networks with node mobility

    Full text link

    Very strong intrinsic supercurrent carrying ability and vortex avalanches in (Ba,K)Fe2As2 superconducting single crystals

    Get PDF
    We report that single crystals of (Ba,K)Fe2As2 with Tc = 32 K have a pinning potential, U0, as high as 10^4 K, with U0 showing very little field depend-ence. In addition, the (Ba,K)Fe2As2 single crystals become isotropic at low temperatures and high magnetic fields, resulting in a very rigid vortex lattice, even in fields very close to Hc2. The rigid vortices in the two dimensional (Ba,K)Fe2As2 distinguish this compound from 2D high Tc cuprate superconductors with 2D vortices, and make it being capable of cearrying very high critical current.Flux jumping due to high Jc was also observed in large samples at low temperatures.Comment: 4 pages, 7 figures. submitte

    Melting of Charge/Orbital Ordered States in Nd1/2_{1/2}Sr1/2_{1/2}MnO3_3: Temperature and Magnetic Field Dependent Optical Studies

    Full text link
    We investigated the temperature (T=T= 15 \sim 290 K) and the magnetic field (H=H= 0 \sim 17 T) dependent optical conductivity spectra of a charge/orbital ordered manganite, Nd1/2_{1/2}Sr1/2_{1/2}MnO3_3. With variation of TT and HH, large spectral weight changes were observed up to 4.0 eV. These spectral weight changes could be explained using the polaron picture. Interestingly, our results suggested that some local ordered state might remain above the charge ordering temperature, and that the charge/orbital melted state at a high magnetic field (i.e. at H=H= 17 T and % T= 4.2 K) should be a three dimensional ferromagnetic metal. We also investigated the first order phase transition from the charge/orbital ordered state to ferromagnetic metallic state using the TT- and HH% -dependent dielectric constants ϵ1\epsilon_1. In the charge/orbital ordered insulating state, ϵ1\epsilon_1 was positive and dϵ1/dω0d\epsilon_1/d\omega \approx 0. With increasing TT and HH, ϵ1\epsilon_1 was increased up to the insulator-metal phase boundaries. And then, ϵ1\epsilon_1 abruptly changed into negative and dϵ1/dω>0d\epsilon_1/d\omega >0, which was consistent with typical responses of a metal. Through the analysis of ϵ1% \epsilon_1 using an effective medium approximation, we found that the melting of charge/orbital ordered states should occur through the percolation of ferromagnetic metal domains.Comment: submitted to Phys. Rev.
    corecore