8,222 research outputs found

    Learning the Joint Representation of Heterogeneous Temporal Events for Clinical Endpoint Prediction

    Full text link
    The availability of a large amount of electronic health records (EHR) provides huge opportunities to improve health care service by mining these data. One important application is clinical endpoint prediction, which aims to predict whether a disease, a symptom or an abnormal lab test will happen in the future according to patients' history records. This paper develops deep learning techniques for clinical endpoint prediction, which are effective in many practical applications. However, the problem is very challenging since patients' history records contain multiple heterogeneous temporal events such as lab tests, diagnosis, and drug administrations. The visiting patterns of different types of events vary significantly, and there exist complex nonlinear relationships between different events. In this paper, we propose a novel model for learning the joint representation of heterogeneous temporal events. The model adds a new gate to control the visiting rates of different events which effectively models the irregular patterns of different events and their nonlinear correlations. Experiment results with real-world clinical data on the tasks of predicting death and abnormal lab tests prove the effectiveness of our proposed approach over competitive baselines.Comment: 8 pages, this paper has been accepted by AAAI 201

    Dimensional crossover of thermal conductance in graphene nanoribbons: A first-principles approach

    Full text link
    First-principles density-functional calculations are performed to investigate the thermal transport properties in graphene nanoribbons (GNRs). The dimensional crossover of thermal conductance from one to two dimensions (2D) is clearly demonstrated with increasing ribbon width. The thermal conductance of GNRs in a few nanometer width already exhibits an approximate low-temperature dependence of T1.5T^{1.5}, like that of 2D graphene sheet which is attributed to the quadratic nature of dispersion relation for the out-of-plane acoustic phonon modes. Using a zone-folding method, we heuristically derive the dimensional crossover of thermal conductance with the increase of ribbon width. Combining our calculations with the experimental phonon mean-free path, some typical values of thermal conductivity at room temperature are estimated for GNRs and for 2D graphene sheet, respectively. Our findings clarify the issue of low-temperature dependence of thermal transport in GNRs and suggest a calibration range of thermal conductivity for experimental measurements in graphene-based materials.Comment: 18 pages, 4 figure

    Epidemic modelling by ripple-spreading network and genetic algorithm

    Get PDF
    Mathematical analysis and modelling is central to infectious disease epidemiology. This paper, inspired by the natural ripple-spreading phenomenon, proposes a novel ripple-spreading network model for the study of infectious disease transmission. The new epidemic model naturally has good potential for capturing many spatial and temporal features observed in the outbreak of plagues. In particular, using a stochastic ripple-spreading process simulates the effect of random contacts and movements of individuals on the probability of infection well, which is usually a challenging issue in epidemic modeling. Some ripple-spreading related parameters such as threshold and amplifying factor of nodes are ideal to describe the importance of individuals’ physical fitness and immunity. The new model is rich in parameters to incorporate many real factors such as public health service and policies, and it is highly flexible to modifications. A genetic algorithm is used to tune the parameters of the model by referring to historic data of an epidemic. The well-tuned model can then be used for analyzing and forecasting purposes. The effectiveness of the proposed method is illustrated by simulation results
    corecore