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Mathematical analysis and modelling is central to infectious disease epidemiology. This paper, inspired by the natural ripple-
spreading phenomenon, proposes a novel ripple-spreading networkmodel for the study of infectious disease transmission.The new
epidemic model naturally has good potential for capturing many spatial and temporal features observed in the outbreak of plagues.
In particular, using a stochastic ripple-spreading process simulates the effect of random contacts and movements of individuals
on the probability of infection well, which is usually a challenging issue in epidemic modeling. Some ripple-spreading related
parameters such as threshold and amplifying factor of nodes are ideal to describe the importance of individuals’ physical fitness
and immunity.The newmodel is rich in parameters to incorporate many real factors such as public health service and policies, and
it is highly flexible to modifications. A genetic algorithm is used to tune the parameters of the model by referring to historic data
of an epidemic. The well-tuned model can then be used for analyzing and forecasting purposes. The effectiveness of the proposed
method is illustrated by simulation results.

1. Introduction

Mathematical representation and analysis of infectious dis-
eases has been central to infectious disease epidemiology
since its inception as a discipline more than a century ago [1–
7]. In recent years, detailed electronic surveillance of infec-
tious diseases has become widespread owing to the advent
of improved computing, electronic data management, the
ability to share and deposit data over the internet, and rapid
diagnostic tests and genetic sequence analysis.These ongoing
developments have increased the application ofmathematical
models to both the generation and testing of basic scientific
hypotheses and to the design of practical strategies for disease
control. Mathematical analyses and models have provided
successful explanations of previously puzzling observations
and played a central part in public health strategies in many
countries [3, 4].

Fundamental to the growing importance of mathemat-
ical epidemiology has been the integration of mathemat-
ical models with rigorous statistical methods to estimate

key parameters of these models and test hypotheses using
available data. In the absence of reliable data, mathematics
can be used to help formulate hypotheses, inform data-
collection strategies, and determine sample sizes, which can
permit discrimination of competing hypotheses. In this way,
mathematics is “no more, but no less, than a way of thinking
clearly about the problem in hand” [5].The extent and quality
of available data can be variable. Ideally, data should be
analysed using models that adequately describe the observed
dynamics and patterns of interest and the mechanisms that
generate these observations. Models should be as simple as
possible, but not so simple that the conclusions drawn are
altered by the consideration of additional realistic complexity.
Unnecessary complexity can obscure fundamental results
and is almost as undesirable as oversimplification. Indeed,
model choice—the process of deciding which model com-
plexities are necessary—is a central part of mathematical
modelling of infectious diseases.

The most recent survey on epidemic modelling can be
found in [7]. Basically, existing epidemic models can be
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classified into two categories [8–20]: (i) top-down models
which are deterministic and based on systems of differential
equations [20], Markov Chain [8], mean field type equations
[9], and (ii) bottom-upmodelswhich are stochastic and based
on computer simulations [10], agent based methods [11],
cellular automata [12], andnetwork theory [13]. For top-down
models, diffusive or perfect mixing and random motion are
assumptions that are not always fulfilled, at least in the human
population. These models also tend to incorporate many
parameters to explain reality, which increase their complexity
and make them computationally intensive and difficult to
analyze. Contrary to what happens to top-down models,
the complex systems approach is the foundation of bottom-
up models, where it is considered that spatial extended
systems are capable of nontrivial collective behaviour—
unexpected behaviour which is observed in macroscopic
quantities. It is assumed that there are several levels of
reality: at a microscopic level, interactions may be described
by complicated potentials, but, at a macroscopic level, the
properties of the system are dominated by the aggregated
effect of all microscopic interactions. Human epidemics are
strongly related to the dynamics of populations and to the
network of social contacts. In particular, network theory has
proven a promising new method applicable to epidemiology.
For instance, the influence of small-world and scale-free
topologies on the breakout of plagues was investigated in
[13, 15]; a random network was used to conduct multiscale
analysis on epidemic dynamics [16]; a growing network
model was reported to develop a population-level epidemic
model [17]. As stated in [18], the combination of network
theory and epidemic modelling can deliver an improved
understanding of disease dynamics and better public health
through effective disease control. However, as pointed out in
a recent perspective paper [19], new theories and methods
are still needed to study interacting dynamics, amplification,
and cascading effects in complex network systems such as
epidemic dynamics.

Inspired by the natural ripple-spreading phenomenon on
liquid surfaces, this paper reports a novel complex system
based bottom-up epidemicmodel: ripple-spreading epidemic
model (RSEM), which is an application-focused extension of
our recent work on general ripple-spreading network models
[21, 22]. As widely acknowledged, random contacts and
movements of individuals impose a big challenge to epidemic
modelling. Defining neighbourhoods and/or introducing
transport rules at a microscopic level are often measures
adopted to simulate social contacts and physical movements
of individuals. In contrast, the new model proposed here
takes account of the effect of such interactions between
individuals via a ripple-spreading process and the reaction
of nodes to ripples, whilst all nodes can be fixed without the
need for a predefined neighbourhood. Basically, the infection
probability is reflected by the point energy of ripples, and
the social activeness of individuals can be associated with
the threshold and the amplifying factor of nodes. Actually,
the proposed ripple-spreading model can intuitively capture
many spatial and temporal factors which matter in the
outbreak of plagues. Therefore, this new model, when in
combinationwith an effective parameter tuningmethod such

as genetic algorithms (GAs), possesses excellent potential for
studying epidemic dynamics.

The remainder of this paper is organized as follows.
Firstly, a general ripple-spreading networkmodel of epidemic
is proposed in Section 2. Then a genetic algorithm based
method is reported in Section 3 to tune the model, so that
it can simulate a specific epidemic. Some simulation results
are illustrated in Section 4, and the paper ends with its main
conclusions in Section 5.

2. Ripple-Spreading Epidemic Model (RSEM)

2.1. The Basic Idea of Ripple-Spreading Network Model. The
basic natural ripple-spreading phenomenon is as follows.
Suppose a collection of stakes is randomly distributed in a
quiet pond, and suddenly a stone is thrown into the pond
generating an initial ripple from the point where the stone
hits the quiet water surface. When the ripple reaches a near
stake, a new ripple is generated around the stake due to the
reflection effect. Hereafter, for the sake of consistency, we
denote such a new ripple as a responding ripple or outgoing
ripple and the ripple which triggers the responding ripple
as a stimulating ripple or incoming ripple. As the initial
stimulating ripple is spreading, more and more responding
ripples are stimulated around stakes.However, since the point
energy on the initial stimulating ripple decays as it spreads
out, those responding ripples triggered at a late phase will
hardly be noticed. Let a node in a network stand for a stake
in the pond, and an edge will be established between two
nodes if a stake’s ripple triggers a new ripple around the other
stake. Then, after all ripples decay, we will get a network
according to which stake’s ripple has caused which stake to
generate a new ripple. This is the basic idea of the ripple-
spreading network model. Figure 1 gives an illustration of the
development of a ripple-spreading network. Formore details,
readers are referred to [21, 22].

We can liken the outbreak of plagues to the above
natural ripple-spreading phenomenon. Replace the stakes
in the pond with a population of susceptible individuals
in a community where an epidemic may break out. An
initial infective case in the community is likened to the
stone which hits the water surface. The influence of this
initial infective case on other individuals is analogous to the
initial stimulating ripple. The probability of infection can
be related to the point energy of the ripple (but as will be
explained later, the point energy is not exactly the probability
of infection). The point energy decays as the ripple spreads
out, and this can effectively capture the fact that long distance
and few contacts often mean a low probability of infection.
The process that a stimulating ripple triggers a responding
ripple is related to a susceptible individual being infected and
then becoming infective. Stakes of different texturesmay have
different reflection effects; for instance, a rigid texture will
cause strong refection whilst a soft texture absorbs the most
energy of the incoming ripple and therefore has no reflection.
This is likened to the difference in the physical fitness,
immunity, and social activities of individuals. Therefore, we
can set a threshold for each individual. If and only if the
point energy of an incoming ripple is above the threshold,
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Figure 1: An illustration of the development of a ripple-spreading
network.

it can be possible for an individual to be infected. Once an
individual is infected, how infective s/he will become largely
depends on his/her social activities. We can set an amplifying
factor for each individual, which will determine the initial
point energy of the responding ripple based on the point
energy of the stimulating ripple. Therefore, the responding
ripple of a socially active individual will have high point
energy, which means a high probability of infecting other
individuals. A stake can generate new reflection every time
when it is reached by an incoming ripple that has enough
point energy. This corresponds to the fact that an individual
can be infected again when s/he becomes susceptible once
again following a period of postrecovery immunity. Which
stake’s ripple causes which subsequent stake to generate a
new ripple is analogous to who infects whom, indicated by
an established edge between two nodes in a network. Who
has infected whom during an epidemic outbreak can be
illustrated by a growing network that is simulated by which
stake’s ripple has triggered which following stake to generate
a new ripple. Now, one may get a feeling that the ripple-
spreading network model invented in [21, 22] can be used
to simulate the outbreak of plagues. To this end, we first
need to, based on the work reported in [21, 22], develop a
mathematical ripple-spreading network model of epidemic,
which hereafter is called ripple-spreading epidemic model,
denoted as RSEM.

2.2. Mathematical Formulation of RSEM. In the proposed
RSEM, there are two groups of parameters. The first group
is those of the general ripple-spreading network model as
reported in [21, 22], but somemodificationsmay be necessary
in order to fit them in the scope of epidemiology. In this
group, first we have parameters for 𝑁EISR epicenters of
initial stimulating ripples (EISRs), which are related to those
initial cases in an epidemic outbreak. In this study, we only
focus on the infectious disease transmission between human
hosts, and other hosts such as rats and mosquitoes are not
considered. Therefore, each EISR is actually a node in the
network, that is, an individual in the community. The 𝑖th
EISR, 𝑖 = 1, 2, . . . , 𝑁EISR, has an initial point energy of
𝐸EISR(𝑖), and it is not active, that is, not infective, until time
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Figure 2: The cycle of epidemic states.

instant 𝑇EISR(𝑖). Suppose there are𝑁𝑁 nodes in the network.
Then, for node 𝑖, there is a threshold 𝛽(𝑖) to determine
whether it is possible for the node to be infected by a certain
infective node and an amplifying factor 𝛼(𝑖) to calculate the
initial energy when the node is infected. Basically, we can
assume all ripples have the same spreading speed 𝑠 and the
same energy decaying coefficient vector 𝜂.

The second parameter group is epidemic specific. Because
the nodes of network represent individuals, every node will
have a certain epidemic state at each time point. Let 𝑆

𝑁
(𝑖, 𝑡)

denote the epidemic state of node 𝑖 at time 𝑡. Table 1 lists
the epidemic states used in this study. Figure 2 shows how
an individual will go through these epidemic states in an
epidemic cycle. Simply speaking, in the epidemic cycle, an
individual is initially susceptible. Once s/he is infected, s/he
becomes exposed and then s/he develops to be infective;
an infected individual may either die or recover from the
infection. A recovered individual usually gets postrecovery
immunity. If this is temporary, then after a period of time
of immunity, s/he will become susceptible again. As one can
see from Figure 2, there is a time period for an individual to
transfer from one epidemic state to its followingup epidemic
state. Except 𝑇

𝑆2𝐸
, all other state transfer times, that is,

𝑇
𝐸2𝐼
, 𝑇
𝐼2𝐷
, 𝑇
𝐼2𝑅

, and 𝑇
𝑅2𝑆

, are independent of the ripple-
spreading process, being instead mainly determined by the
nature of the epidemic, the physical fitness of individuals,
and/or relevant public health policies/measures. Basically,
from statistical study of historical data, we may get an esti-
mate of each state transfer time distribution (excluding 𝑇

𝑆2𝐸
).

In this study, we assume they all have Poisson distributions.
For instance, 𝑇

𝐸2𝐼
may have a Poisson distribution with a

mean of 𝑇
𝐸2𝐼

. Therefore, with 𝑇
𝐸2𝐼

as a parameter, we can
roughly know how long it will take for an individual to
transfer from state “𝐸” to state “𝐼”. When running the RSEM,
once a node becomes exposed, we then randomly assign a
𝑇
𝐸2𝐼

to the node according to a Poisson distributionwith𝑇
𝐸2𝐼

as the mean. Similarly, we deal with other state transfer times
except 𝑇

𝑆2𝐸
. Therefore, in the second group, we have four

means as parameters, namely, 𝑇
𝐸2𝐼

, 𝑇
𝐼2𝐷

, 𝑇
𝐼2𝑅

, and 𝑇
𝑅2𝑆

. For
the sake of generality, 𝑇

𝐸2𝐼
, 𝑇
𝐼2𝐷
, 𝑇
𝐼2𝑅

, and 𝑇
𝑅2𝑆

are allowed
to be zero, which means one or more epidemic states may
not be experienced by an individual in an epidemic cycle. For
example, if 𝑇

𝐸2𝐼
= 0 and 𝑇

𝑅2𝑆
= 0, then there is no latency

period or postrecovery immunity.
Besides the two groups of parameters, there are three

kinds of dynamics in the RSEM: the ripple-spreading process,
the reaction of nodes to ripples, and the state transfer of
nodes.The first two originate from the general work reported
in [21, 22], but some minor epidemic-specific modifications
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are introduced.The dynamics of state transfer is a brand-new
concept for the general ripple-spreading network model.

The ripple-spreading process in the RSEM is mathemati-
cally described as follows. Suppose ripple 𝑖 is associated with
the 𝑖th node, 𝑖 = 1, 2, . . . , 𝑁

𝑁
. Then, let 𝐸

𝑁
(𝑖) be the initial

point energy of the ripple 𝑖, 𝑒
𝑁
(𝑖, 𝑡) the point energy of the

ripple 𝑖 at time 𝑡, and 𝑟
𝑁
(𝑖, 𝑡) the radius of ripple 𝑖. Initialize

𝐸
𝑁
(𝑖) = 0, 𝑒

𝑁
(𝑖, 0) = 0 and 𝑟

𝑁
(𝑖, 0) = 0. Once ripple 𝑖 is

triggered at a certain time point, 𝐸
𝑁
(𝑖) will be given a value

larger than zero. If 𝐸
𝑁
(𝑖) > 0 and 𝑆

𝑁
(𝑖, 𝑡) = “𝐼” (i.e., the state

of node 𝑖 is “Infective”), then ripple 𝑖will spread out as follows:

𝑟
𝑁 (𝑖, 𝑡) = 𝑟𝑁 (𝑖, 𝑡 − 1) + 𝑠, (1)

𝑒
𝑁 (𝑖, 𝑡) = 𝑓Decay (𝐸𝑁 (𝑖) , 𝑟𝑁 (𝑖, 𝑡)) , (2)

where 𝑓Decay is a function defining how the point energy
decays as the ripple spreads out. A typical decaying function
may be

𝑓Decay (𝐸, 𝑟) =
𝜂 (𝑘) 𝐸

2𝜋𝑟
, (3)

and 𝑘 is an integer index calculated as

𝑘 =
𝑟
𝑁 (𝑖, 𝑡)

𝑠
. (4)

Once the 𝑆
𝑁
(𝑖, 𝑡) changes from “I” to “D” or “R”, reset 𝐸

𝑁
(𝑖) =

0, 𝑒
𝑁
(𝑖, 0) = 0, and 𝑟

𝑁
(𝑖, 0) = 0.

The reaction of nodes to ripples defines how a node is
infected. Suppose node 𝑖 is reached by ripple 𝑗 at time 𝑡; that
is,

𝑟
𝑁
(𝑗, 𝑡) ≥ 𝐷

𝑁
(𝑖, 𝑗) ≥ 𝑟

𝑁
(𝑗, 𝑡 − 1) , (5)

where 𝐷
𝑁
(𝑖, 𝑗) is the distance between node 𝑖 and node 𝑗. If

𝑆
𝑁
(𝑖, 𝑡) = “𝑆” and 𝑒

𝑁
(𝑗, 𝑡) ≥ 𝛽(𝑖), that is, the point energy of

ripple 𝑗 is above the threshold of node 𝑖, then node 𝑖 will be
infected with a probability whichmay be defined based on an
arctangent function of 𝑒

𝑁
(𝑗, 𝑡) as follows:

𝑝
𝑅 (𝑖) =

tan−1 (𝜅 ((𝑒
𝑁
(𝑗, 𝑡) − 𝛽 (𝑖)) /𝛽 (𝑖)) − 𝛿) + tan−1 (𝛿)
𝜋/2 + tan−1 (𝛿)

,

(6)

where 𝜅 > 0 and 𝛿 are coefficients which can adjust the
shape and location of the arctangent function. Once node 𝑖
is infected, we establish a directional link from node 𝑗 and
node 𝑖 by modifying the adjacency matrix:

𝑀
𝐴
(𝑗, 𝑖) = 𝑀

𝐴
(𝑗, 𝑖) + 1, (7)

set 𝑆
𝑁
(𝑖, 𝑡 + 1) = “𝐸”, set the initial point energy of ripple 𝑖 as

𝐸
𝑁 (𝑖) = 𝛼 (𝑖) 𝑒𝑁 (𝑗, 𝑡) , (8)

record the time of becoming exposed 𝑡
𝐸
(𝑖) = 𝑡, and assign

values to 𝑇
𝐸2𝐼
(𝑖), 𝑇
𝐼2𝐷
(𝑖), 𝑇
𝐼2𝑅
(𝑖), and 𝑇

𝑅2𝑆
(𝑖) according to

relevant Poisson distributions defined by 𝑇
𝐸2𝐼

, 𝑇
𝐼2𝐷

, 𝑇
𝐼2𝑅

,
and 𝑇

𝑅2𝑆
.

Please note that, although ripple 𝑖 has 𝐸
𝑁
(𝑖) > 0 at time

𝑡
𝐸
(𝑖), it will not start spreading until the state of node 𝑖 has

become “Infective”, which is determined by the following
state transfer dynamics: if 𝑆

𝑁
(𝑖, 𝑡) = “𝐸” and 𝑡 − 𝑡

𝐸
(𝑖) ≥

𝑇
𝐸2𝐼
(𝑖), then set 𝑆

𝑁
(𝑖, 𝑡 + 1) = “𝐼” and start the ripple-

spreading process for ripple 𝑖; if 𝑆
𝑁
(𝑖, 𝑡) = “𝐼” and 𝑡 − 𝑡

𝐸
(𝑖) ≥

𝑇
𝐸2𝐼
(𝑖) + 𝑇

𝐼2𝐷
(𝑖), randomly decide whether node 𝑖 will die

according to a preset death rate 𝑅
𝐷
; if node 𝑖 has died, set

𝑆
𝑁
(𝑖, 𝑡 + 1) = “𝐷”, 𝑟

𝑁
(𝑖, 𝑡) = 0, and 𝐸

𝑁
(𝑖) = 0, and stop

the ripple-spreading process of ripple 𝑖; if 𝑆
𝑁
(𝑖, 𝑡) = “𝐼” and

𝑡 − 𝑡
𝐸
(𝑖) ≥ 𝑇

𝐸2𝐼
(𝑖) +𝑇

𝐼2𝑅
(𝑖), set 𝑆

𝑁
(𝑖, 𝑡 + 1) = “𝑅”, 𝑟

𝑁
(𝑖, 𝑡) = 0,

and𝐸
𝑁
(𝑖) = 0, and stop the ripple-spreading process of ripple

𝑖; if 𝑆
𝑁
(𝑖, 𝑡) = “𝑅” and 𝑡− 𝑡

𝐸
(𝑖) ≥ 𝑇

𝐸2𝐼
(𝑖)+𝑇

𝐼2𝑅
(𝑖)+𝑇

𝑅2𝑆
(𝑖), set

𝑆
𝑁
(𝑖, 𝑡 + 1) = “𝑆”. So, node 𝑖 has gone through an epidemic

cycle.
By integrating the above parameters and dynamics, the

proposed RSEM can be finally described as a whole by the
following steps.

Step 1. Initialization, that is, set 𝑆
𝑁
(𝑖, 0) = “𝑆”, 𝐸

𝑁
(𝑖) =

0, 𝑟
𝑁
(𝑖, 0) = 0, 𝑡 = 0 and 𝑀

𝐴
(𝑗, 𝑖) = 0 for all 𝑖 = 1, 2, . . . ,

𝑁
𝑁

and 𝑗 = 1, 2, . . . , 𝑁
𝑁
, randomly choose 𝑁EISR nodes

as initial cases, set their state as “E”, set their 𝑇
𝐸2𝐼

as 𝑇EISR,
and randomly set their 𝑇

𝐼2𝐷
, 𝑇
𝐼2𝑅

, and 𝑇
𝑅2𝑆

according to
the relevant Poisson distributions defined by 𝑇

𝐼2𝐷
, 𝑇
𝐼2𝑅

, and
𝑇
𝑅2𝑆

.

Step 2. While the termination criteria are not satisfied, let 𝑡 =
𝑡 + 1, do for 𝑖 = 1, 2, . . . , 𝑁

𝑁
.

Substep 2.1. Let 𝑆
𝑁
(𝑖, 𝑡) = 𝑆

𝑁
(𝑖, 𝑡 − 1).

Substep 2.2. If 𝐸
𝑁
(𝑖) > 0 and 𝑆

𝑁
(𝑖, 𝑡) = “𝐼”, let ripple 𝑖 spread

for one time step by following the ripple-spreading process
described by (1) to (4).

Substep 2.3. If node 𝑖 has 𝑆
𝑁
(𝑖, 𝑡) = “𝑆” and is reached ripple 𝑗

according to (5), calculate the reaction of node 𝑖 as described
by (6) to (8).

Substep 2.4. If 𝑆
𝑁
(𝑖, 𝑡) ̸= “𝑆”, following the state transfer

dynamics to process node 𝑖 for one time step.
When an RSEM run is terminated, a network will appear

based on all established directional links which indicate how
the infectious disease has transmitted between individuals.
Figure 3 illustrates how the infectious disease transmission
can be simulated by the proposed RSEM.

2.3. Further Analysis of RSEM. As discussed in the Intro-
duction section, social contacts and physical movements of
individuals impose a big challenge to epidemic modeling.
Fortunately, thanks to ripple-spreading dynamics, the pro-
posed RSEM can effectively simulate the effect of social
contacts and physical movements without actually applying
such activities to each individual. Basically, the strength of
social contacts and physical movements of an individual
is largely reflected by the amplifying factor 𝛼(𝑖) and the
threshold 𝛽(𝑖). For a socially active individual, s/he is more



Mathematical Problems in Engineering 5

(f). Node 2 has infected node 1; 
node 4 becomes infective. 
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(a). Node 1 is the initial case; 
other nodes are susceptible. 

(b). Node 1 has infected node 3, which 
becomes exposed but not infective yet. 

(c). Node 1 has recovered with temporary 
immunity; node 3 becomes infective. 

(d). Node 3 has infected node 2
but failed to infect node 4.

(e). Node 1 becomes 
susceptible again; node 

3 has died; node 2 
becomes infective and 

has infected node 4.

Figure 3: An illustration of RSEM.

likely to be infected, so s/he should have a smaller 𝛽(𝑖).
According to (6), one can see that a smaller 𝛽(𝑖) means a
higher probability of being infected. At the same time we set
a larger 𝛼(𝑖) for a socially active individual, and, from (8), one
can see that his/her ripple will then havemore point energy to
infect others, which is in line with the reality. According to (2)
and (3), as a ripple spreads out, its point energy decays, which
in generalmeans that the infection probability becomes lower
as the distance between two individuals increases.This is also
the case in reality: for an individual, usually most of his/her
social contacts and physical movements happen within a
small group of people (comparedwith thewhole community)
and a limited physical space (comparedwith the entire space).
Therefore, most secondary infections caused by him/her will
be spatially limited. Now it is clear that, by associating the
point energy of ripples to the probability of infection and
the amplifying factor and the threshold of nodes to the
social contacts and physical movements of individuals, the
proposed RSEM provides a new approach to simulate and
study the epidemic dynamic.

One may argue that, according to Table 1 and Figure 2,
the proposed RSEM misses the state of “Admitted”, which
usually means that individuals who are infective are quaran-
tined in hospital and therefore have no chance to transmit
the infection to others. Obviously, this state is not an original
state in the natural epidemic cycle, but a man-made state
due to the public health service. Actually, the effect of the
state of “Admitted” can be equivalent to shortening 𝑇

𝐼2𝐷

and 𝑇
𝐼2𝑅

, and increasing 𝑇
𝑅2𝑆

. Therefore, in this study, we do

not consider the state of “Admitted” explicitly. This will be
further discussed later in the simulation section.

It should be noted that, in the ripple-spreading process,
(3) uses an energy decaying coefficient vector rather than
a single coefficient scalar. This is because the infectiousness
over time after infection is not a constant, as shown by
the examples in Figure 4. Therefore, we can use a piecewise
function defined by the vector 𝜂 to describe the time-varying
infectiousness of a given epidemic.

In the reaction of node to ripples, according to (6), the
curve of the probability 𝑝

𝑅
(𝑖) for node 𝑖 to be infected has a

shape of an arctangent function like the solid line in Figure 5.
Basically, once 𝑒

𝑁
(𝑗, 𝑡) ≥ 𝛽(𝑖), the larger the point energy

𝑒
𝑁
(𝑗, 𝑡) is, the higher the probability for node 𝑖 to be infected

by node 𝑗. The probability 𝑝
𝑅
(𝑖) does not go up linearly as

𝑒
𝑁
(𝑗, 𝑡) increases. Actually, 𝑝

𝑅
(𝑖) increases very slowly before

𝑒
𝑁
(𝑗, 𝑡) reaches a certain critical value, around which 𝑝

𝑅
(𝑖)

goes up sharply and then gets almost saturated no matter
how large 𝑒

𝑁
(𝑗, 𝑡) is.This is reasonable, because, according to

(3), the value of 𝑒
𝑁
(𝑗, 𝑡) largely reflects the distance (spatial,

social, or both) between two nodes, and in reality infection
occurs mainly within a certain range of spatial and/or social
distance, whilst beyond that range the probability of infection
is quite low. The coefficient 𝜅 determines how sharply the
probability curve changes around the critical value of 𝑒

𝑁
(𝑗, 𝑡):

the larger the value of 𝜅, the sharper the probability curve.
The coefficient 𝛿 determines how likely it is that an 𝑒

𝑁
(𝑗, 𝑡)

will cause a large probability of infection: the smaller the
value of 𝛿, the more likely a large probability. To simplify
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Figure 4: Biological infectiousness over time after infection for three different human pathogens [14].

Table 1: States used in epidemic model.

Symbol Epidemic state Description

𝑆 Susceptible Healthy Individuals who could
potentially develop the disease.

𝐸 Exposed

Individuals who have been
infected with the disease, but
who are still in the latent period
(with or without symptoms of
the disease) and who cannot
transmit the disease to others.

𝐼 Infective

Individuals who are infected with
the disease (with or without
symptoms of the disease) and
who are capable of transmitting
the infection to others.

𝑅 Recovered
Individuals who have recovered
from infection thereby acquiring
immunity (temporary or
permanent) from infection.

𝐷 Dead Individuals who have died from
infection

0
0

1

𝛽(i) 𝛿 × 𝛽(i)/𝜅 + 𝛽(i)

Point energy of ripple j: eN(j, t)
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Figure 5: Probability of infection and point energy of ripple.

the RSEM, one may sometimes use a piecewise probability
function, such as the dotted line in Figure 5, to approximate
the arctangent function.

From the description above, it is apparent that the
proposed RSEM is more complicated than many existing

epidemic models. This also means that it is more flexible to
modifications. For instance, the space where nodes distribute
and ripples spread out is not necessarily the real geographic
space. Instead, it can be an artificial multidimensional space
which includes social relationships, shopping patterns, and
habits. The nodes may not always be fixed; in other words, by
referring to relevant statistic studies of long-distance travel-
ling patterns, some randomly chosen nodes may occasionally
jump in the space.TheproposedRSEMcan easily incorporate
suchmodifications, but this is beyond the scope of this paper.

3. Genetic Algorithm for Tuning
Model Parameters

Like all other models, the proposed RSEM is supposed
to be able to (i) simulate historic epidemic outbreaks, (ii)
analyze epidemic dynamics/mechanism and health poli-
cies/measures, and (iii) make forecasts to some extent.
Simulating historic epidemic outbreaks is mainly used for
model verification building confidence so that the model
will be employed for analysis and forecasting. In the sim-
ulation of historic epidemic outbreaks, the output of a
model should match the relevant historic data as closely as
possible. Basically, this can be assessed by comparing the
number of daily infections𝑁

𝐷𝐼
(𝑡), the number of daily deaths

𝑁
𝐷𝐷
(𝑡), the number of daily recoveries 𝑁

𝐷𝑅
(𝑡), and the

basic reproduction ratio 𝑅
0
, which is defined as the average

number of secondary infections produced when one infected
individual is introduced into a population where everyone
else is susceptible [14]. In short, the quantity 𝑅

0
governs

whether an infection can spread and be sustained within a
population. If 𝑅

0
is greater than one, then the number of

infections in a susceptible population will increase and the
infection will be sustained, whereas if 𝑅

0
is less than one, the

infection should fail to take hold andwill die out very quickly.
For a simple deterministic model with a few parameters

such as those based differential equations, it is possible to
tune the parameters by hand based on experience, in order
to match relevant historic data. However, for a complicated
stochastic model with many parameters, which is the case
for the proposed RSEM, hand tuning is very difficult, if
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not impossible. Actually, the output of the RSEM does
not simply rely on the values of parameters but is more
determined by whether such values together satisfy certain
conditions, known or unknown. For instance, [21] derived
some conditions which involve all parameters to determine
whether all nodes will be connected together in the general
ripple-spreading network model. Such complicated relation-
ships between parameters reflect the fact that in reality it
is usual for many factors to work together in a complex,
intermixed fashion. Tuning the parameters for a complicated
model/system is often far beyond the capability of even
human experts. Fortunately, we can turn to methods such
as genetic algorithms (GAs) for help. A GA is a large-scale
parallel stochastic searching and optimizingmethod inspired
by the biological mechanisms of evolution and heredity. In
recent years, GAs have been widely used for resolving various
complex problems, particularly those including parameter
optimization [23–26]. The basic idea of a GA is that, given
a population of chromosomes, the environmental pressure
causes natural selection (survival of the fittest), and hereby
the fitness of the population grows. It is easy to see such
a process as optimization. Given an objective function to
be maximized, we can randomly create a set of candidate
solutions (chromosomes) and use the objective function as an
abstract fitness measure (the higher the better). Based on this
fitness, some of the better chromosomes are chosen to seed
the next generation by applying crossover and/or mutation.
Crossover is applied to two selected chromosomes, the so-
called parents, and results in one or two new chromosomes,
the children. Mutation is applied to one chromosome and
results in one new chromosome. Applying crossover and
mutation leads to a set of new chromosomes, the offspring.
Based on their fitness, these offsprings compete with the
old chromosomes for a place in the next generation (in
some GA implementations, the population is all replaced by
the offspring). This process can be iterated until a solution
is found or a previously set time limit is reached. Many
components of such an evolutionary process are stochastic.
According to Darwin, the emergence of new species, adapted
to their environment, is a consequence of the interaction
between the survival of the fittest mechanism and undirected
variations. Variation operators must be stochastic, the choice
of which pieces of information will be exchanged during
crossover, as well as the changes in a chromosome during
mutation, is random. On the other hand, selection operators
can be either deterministic or stochastic. In the latter case
fitter chromosomes have a higher chance of being selected
than less fit ones, but typically even the weak chromosomes
have a chance to become a parent or to survive. For more
theoretical details of GAs, readers may refer to [23–26].

To apply a GA in this study, firstly, we need to decide,
in the RSEM, which parameters can be set up by hand and
which ones need to be tuned by the GA. Basically, parameters
such as the number of initial cases 𝑁EISR, the means of state
transfer times 𝑇

𝐸2𝐼
, 𝑇
𝐼2𝐷

, 𝑇
𝐼2𝑅

, and 𝑇
𝑅2𝑆

, energy decaying
coefficient vector 𝜂, and death rate 𝑅

𝐷
can be easily set

up according to relevant historic data and statistic studies.
Coefficients 𝜅 and 𝛿 can also be tuned by hand mainly to

change the overall shape of the infection probability curve as
shown in Figure 5. Most ripple-spreading related parameters
are purpose-designed and have no real-world meanings or
references, and therefore they should be tuned by the GA.
These parameters specifically include the initial point energy
𝐸EISR(𝑖) of initial cases, the ripple spreading speed 𝑠, the
threshold 𝛽(𝑖), and the amplifying factor 𝛼(𝑖). It should be
noted that we do not need to tune 𝛽(𝑖) and 𝛼(𝑖) for every
node, but we just need to tune their means, that is, 𝛽 and
𝛼, and then generate 𝛽(𝑖) and 𝛼(𝑖) according to a Poisson
distribution with 𝛽 and 𝛼 as the means, respectively.

Then, we construct a fitness function based on 𝑁
𝐷𝐼
(𝑡),

𝑁
𝐷𝐷
(𝑡),𝑁

𝐷𝑅
(𝑡), and 𝑅

0
as follows:

𝐽 = 𝑤
1


𝑅
0
− 𝑅
∗

0


+ 𝑤
2
∑

𝑁
𝐷𝐼 (𝑡) − 𝑁

∗

𝐷𝐼
(𝑡)


+ 𝑤
3
∑

𝑁
𝐷𝐷 (𝑡) − 𝑁

∗

𝐷𝐷
(𝑡)


+ 𝑤
4
∑

𝑁
𝐷𝑅 (𝑡) − 𝑁

∗

𝐷𝑅
(𝑡)

,

(9)

where 𝑤
1
to 𝑤
4
are weights, the variables with “∗” are the

approximated values of relevant historical data, and the over
barred variables are the relevant mean results of a number
of random RSEM runs with a given set of parameter values.
Usually, the curve of historical data is not smooth and nor
is the curve of a single RSEM run. If we directly compare
the historical curve with the curve of any single RSEM run,
the summed error will usually be very large, even though the
two curves are actually similar to each other. Therefore, we
need to use approximated values and average values, both of
which are much smoother for accurate comparison. Another
reason for utilizing the average results of many RSEM runs is
that the proposed RSEM is stochastic in nature, which means
that the model will deliver different results in different runs
even for the same set of parameter values.Therefore, to better
assess the effect of a given set of parameter values, a sufficient
number of RSEM runs need to be conducted for a parameter
value set.

Thus, we can useGA to tune the parameters for the RSEM
as follows.

Step 1. Initialize a population of sets of parameter values.

Step 2. For a set of parameter values, conduct a number
of RSEM runs, and then calculate the fitness based on the
average results. Repeat the same for every set of parameter
values in the population.

Step 3. If the termination criterion is satisfied, go to Step 4.
Otherwise, perform selection, crossover, and mutation to
generate a new population of sets of parameter values. Go to
Step 2.

Step 4. Output the best set of parameter values, and stop.

Once the RSEM is well tuned by the GA, we can then
use it to analyze epidemic details and policy effects, as well as
forecasting new trend or future development of an epidemic.
Some relevant technical details concerning GA design and
implementation may be found in [22]. It should be noted,
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however, that [22] focuses on applying a GA to optimize the
basic RSNM of [21] so as to generate small-world and scale-
free network topologies. As discussed in Section 2, the basic
RSNM is somewhat different from the RSEM proposed in
this paper. Nevertheless, the use of a GA to optimize model
parameters in [22] is helpful to tune the RSEM in this paper.

4. Illustrative Simulation Results

As explained in Section 3, the first step in applying the
proposed RSEM is to use some historical data to tune the
parameter values in order to simulate the associated real
epidemic outbreak. Here we consider the March 2003 Severe
Acute Respiratory Syndrome (SARS) outbreak inHongKong.
From the empirical data for Hong Kong, we know that
a severe localized epidemic occurred in Amoy Gardens.
Through contact tracing, it has been estimated that 332 cases
were involved in this outbreak, a large proportion of which
could be traced to a single person. Outbreaks involving the
direct spread of the disease from one primary case to a very
large number of secondary cases are often referred to as
“Super-Spreading Events”, which are often ideally used to test
epidemic models. As one can see from Figures 6, 7, and 8, the
real historical data formno smooth curves. Because the SARS
case in Amoy Gardens is a unique single case, we cannot get
any smooth curve of average historical data, which makes
it difficult to calculate the fitness of chromosome as defined
in (9). Thus, to be able to apply a GA to tune the reported
RSEM, we adopt the differential equations based model in
[20] to generate an approximated smooth curve of average
historical data. With 3 smooth curves (of daily infections,
death, and recovery, resp.) generated by the model in [20],
we can calculate the chromosome fitness according to (9) and
then apply GA to tune the RSEM parameters. It should be
noted that there are actually no daily infection data, and we
hence use the daily admissions data in [20] to approximate
them. In this study, the weights 𝑤

1
to 𝑤
4
in (9) are set to

100, 1, 10, and 2, respectively. These values for 𝑤
1
to 𝑤
4
are

chosen largely by referring to the data of basic reproduction
ratio, daily admissions, daily death, and daily recovery in
[20], so that the four items in (9) will have roughly equal
contributions to the fitness function. In the test, all SARS-
specific disease related parameters are set up according to
[20], and the number of nodes is 𝑁

𝑁
= 2396 (i.e., the

susceptible population in Amoy Gardens). For the GA, the
crossover probability is set to 0.6, the mutation probability
is set to 0.1, the population size is 200, and the number
of evolving generations is 500. For each chromosome in a
population, we use the parameter values represented by it to
run the RSEM for 100 times, and then use the average results
to calculate its fitness according to (9). Finally, we use the
fittest chromosome in the last generation of GA to set the
RSEM, in order to simulate the SARS case in Amoy Gardens.

Figures 6, 7, and 8 plot the final simulation results of
applying RSEM to study the SARS case in Amoy Gardens;
the standard deviations (SDs) of the results of the model
in [20] and the RSEM from the historical data are given
in Table 2. From Figures 6, 7, and 8 and Table 2, one can
see that (i) the average curves of RSEM are similar to those

of [20]; (ii) the SDs of the RSEM are close to those of
the model in [20]; (iii) the results of a single RSEM run
have patterns (peaks and valleys) fairly similar to those of
historical data; (iv) the ranges and tendencies of RSEM data
all match those of historical data and [20]. Therefore, Figures
6, 7, and 8 and Table 2 illustrate that the proposed RSEM
and GA can deliver a fairly satisfactory performance in the
case study of SARS and therefore can be useful to model
epidemic dynamics. However, due to lack of relevant data
on the physical fitness, immunity, and social activities of the
population inAmoyGardens, at themoment it is still difficult
to explain or make sense of the values of RSEM parameters
in this SARS case. Therefore, more cases studies based on
different historical data and social survey data are still needed,
which is beyond the scope of this paper and demands effort
in future research.

Due to the early stage of this work, we have not collected
sufficient historical data for parameter tuning purposes.
However, we can still investigate themodel based on synthetic
data sets, in order to understand the properties of the model
itself. Here, we can give some simulation results to see how
the parameters can affect the output of the model. Now we
set 𝑁
𝑁
= 250; that is, the population of original susceptible

individuals is 250. We assume there are 8 initial cases
randomly distributed in the population. Firstly, we suppose
that the population is uniformly randomly distributed in a
square area defined by coordinates (−1000, −1000) and (1000,
1000), and all initial cases have the same initial point energy
𝐸EISR = 10000, the Poisson means for generating 𝑇

𝐸2𝐼
(𝑖),

𝑇
𝐼2𝐷
(𝑖), 𝑇
𝐼2𝑅
(𝑖) and 𝑇

𝑅2𝑆
(𝑖), 𝛽(𝑖) and 𝛼(𝑖) are 𝑇

𝐸2𝐼
= 10,

𝑇
𝐼2𝐷
= 15, 𝑇

𝐼2𝑅
= 15 and 𝑇

𝑅2𝑆
= 20, 𝛽 = 5, and 𝛼 = 1000,

and coefficients 𝜂 = 1, 𝜅 = 1, and 𝛿 = 10. Then, in the
simulation, we want to study the influence of three sets of
parameters: (i) the square area (which is related to the density
of population), (ii) the pair of 𝛽 and 𝛼 (which are related to
the overall social activeness of the population), and (iii) the
triple of𝑇

𝐼2𝐷
,𝑇
𝐼2𝑅

, and𝑇
𝑅2𝑆

(which are related to the general
public health service standard). Each time we only change
the value(s) of one set of parameters by 20% of the associated
default values, while all the other parameters have the default
values as given above. Please note that 𝛽 and 𝛼 change in
opposite directions (𝛽 increases whilst 𝛼 decreases) and 𝑇

𝑅2𝑆

and the pair of (𝑇
𝐼2𝐷

, 𝑇
𝐼2𝑅

) change in opposite directions
(𝑇
𝑅2𝑆

increases whilst the other two decrease). For each given
whole set of parameter values, we conduct 10 RSEM runs.
Then, we only check the number of total infections, and the
average results are given in Table 3, from which we have the
following observations.

(i) The default values for parameters result in a network
where all nodes are connected, which means the
whole population is eventually infected. This default
case is used as a benchmark to assess the influence of
some model parameters.

(ii) The density of population plays an important role in
the transmission of infectious diseases. A high density
will contribute to the outbreak of plagues.
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Table 2: Comparative results between RSEM and the model in [20].

Standard deviations Number of infections Number of death Number of recovery
Daily Cumulative Daily Cumulative Daily Cumulative

Model in [20] 12.7012 26.2656 1.5375 4.2721 7.9375 37.0366
RSEM 12.7217 27.2463 1.5573 3.5244 8.0686 40.9718
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Figure 6: Simulation results for Amoy Gardens, Hong Kong: number of infections.
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Figure 7: Simulation results for Amoy Gardens, Hong Kong: number of deaths.
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Figure 8: Simulation results for Amoy Gardens, Hong Kong: number of recovery.

(iii) Large threshold and small amplifying factor have a
negative influence on the transmission of infectious
diseases. This means a community where the overall
social activeness is low will have a better resistance to
epidemic outbreaks. When an 80% change applies to
the default values, usually only the initial cases will
cause a few infections, and the epidemic will die out
soon.

(iv) Similarly, the general public health service standard
plays a crucial role in the control of epidemic out-
breaks. If infected individuals can be quarantined in
a timely manner, say, if 𝑇

𝐼2𝐷
and 𝑇

𝐼2𝑅
are reduced by

80%, then infections are largely limited to the initial
cases and the nearby.

(v) The above simulation results clearly reveal the trends
of the influence of different RSEM parameters. How-
ever, again, to fully understand the performance of
RSEM, extensive efforts are still needed based on
various real epidemics data in future research.

5. Conclusions and Future Work

This paper reports a novel ripple-spreading network model
for the study of infectious disease transmission. We term the
new model the ripple-spreading epidemic model (RSEM).
By mimicking the ripple-spreading phenomenon on a calm
liquid surface, the new model has many natural advantages
to describe spatial and temporal factors in the outbreak of
plagues. The effect of individuals’ social activities, such as
contacts and movements, which are often difficult for many
existing models to simulate, can be effectively described by

Table 3: Influence of model parameters on total infections.

Change % default
values Square area (𝛽, 𝛼) (𝑇

𝑅2𝑆
, 𝑇
𝐼2𝐷
, 𝑇
𝐼2𝑅

)

0% 250.0 250.0 250.0
20% 228.7 219.3 232.5
40% 205.7 185.8 191.6
60% 136.4 108.2 93.8
80% 51.9 16.5 21.9

the amplifying factor of nodes and the point energy of ripples,
which largely determines the probability of infection. As
the point energy of a ripple decays as the ripple spreads
out, the probability of infection decreases. The threshold
of nodes is another important parameter determining the
dynamic process of infectious disease transmission, and
basically this parameter is well associated with the physical
fitness and immunity of individuals. The proposed model
is highly flexible to modifications and is therefore capable
of incorporating new real factors which matter in the study
of epidemic. The general model can be tuned by genetic
algorithm according to the historic data of a specific plague,
and the well-tuned model can then be used to analyze and
forecast the associated infectious disease. The effectiveness
of the proposed model and method is illustrated by some
simulation results.

Future work will include (i) carrying out more theoretical
analysis of the proposed model, (ii) comparing with other
models, and (iii) modifying and tuning the proposed model
in order to study some real outbreaks of plagues. In particular,
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as a new epidemic model, the RSEM needs relevant data on
the physical fitness, immunity, and social activities of the
population in a community/society, in order to better set up
and understand the RSRPs (ripple-spreading related param-
eters). To get such data, a purpose-designed social survey
needs to be conducted within a certain time window after
a plague breaks out. Therefore, conducting relevant social
survey for a recent plague event to collect sufficient data will
be a crucial part of future work. Once such data are collected
for a specific plague event, more comparisons with different
relevant existing models will be made. Such application-
oriented study needs to be conducted for different diseases,
in order to explore the full potential of the proposed RSEM.
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