306 research outputs found

    “A Cleaner, Better, Stronger Land”: The Causes of Anti-German Riots in Wartime London, 1914-1918

    Get PDF
    During the First World War, anti-German sentiments manifested itself as riots in several occasions in London. Several explanations and interpretations were put forward by contemporary observers and later historians. This essay intends to provide a more balanced discourse on the causes of the anti-German riots. I will demonstrate that the popular anti-German violence was a mixed product of press propaganda and local grievance caused by food shortage and economic inflation. Moreover, while this essay does not aim to fully exonerate the British government, I will explain that in some instances, the role of authority was quite limited in terms of promoting anti-German hatred

    "Gaze-Based Biometrics: some Case Studies"

    Get PDF

    Bayesian cross validation for gravitational-wave searches in pulsar-timing array data

    Get PDF
    Gravitational-wave data analysis demands sophisticated statistical noise models in a bid to extract highly obscured signals from data. In Bayesian model comparison, we choose among a landscape of models by comparing their marginal likelihoods. However, this computation is numerically fraught and can be sensitive to arbitrary choices in the specification of parameter priors. In Bayesian cross validation, we characterize the fit and predictive power of a model by computing the Bayesian posterior of its parameters in a training dataset, and then use that posterior to compute the averaged likelihood of a different testing dataset. The resulting cross-validation scores are straightforward to compute; they are insensitive to prior tuning; and they penalize unnecessarily complex models that overfit the training data at the expense of predictive performance. In this article, we discuss cross validation in the context of pulsar-timing-array data analysis, and we exemplify its application to simulated pulsar data (where it successfully selects the correct spectral index of a stochastic gravitational-wave background), and to a pulsar dataset from the NANOGrav 11-year release (where it convincingly favors a model that represents a transient feature in the interstellar medium). We argue that cross validation offers a promising alternative to Bayesian model comparison, and we discuss its use for gravitational-wave detection, by selecting or refuting models that include a gravitational-wave component.Comment: 7 pages, 4 figures. Submitted to MNRA

    Design of four rotor aircraft with obstacle avoidance

    Get PDF
    The system uses TM4C123G as the core of quadrotor autonomous vehicle control, which consists of flight control module, power supply module, motor speed control module, optical flow sensing module, and target tracking identification module. The flight control module includes angle sensor, gyroscope, and TLS1401-LF module. The flight control processes the collected data through the chip (TM4C123G), and processes the data with PID control algorithm, while solving the PWM increment and decrement needed for the corresponding motor, adjusting the motor in time and adjusting the flight attitude. The binocular camera identifies the color of the pole tower and measures the distance, so that the distance between the aircraft and the nearest point of the pole tower is kept within 50±10cm. After detecting the red (green) tower as the center, fly around the tower clockwise (counter) for one week (top view). Finally, the OV7725 camera is used to identify the solid black circle mark of the landing point and land smoothly and accurately in the target area, thus realizing an efficient robot around the barrier

    Development of a Novel Latching-Type Electromagnetic Actuator for Applications in Minimally Invasive Surgery

    Get PDF
    Single-port laparoscopic surgery (SLS), which utilises one major incision, has become increasingly popular in the healthcare sector in recent years. However, this technique suffers from several problems particularly the inability of current SLS instruments to provide the optimum angulation that is required during SLS operations. In this paper, the development of a novel latching-type electromagnetic actuator is reported, which is aimed to enhance the function of SLS instruments. This new actuator is designed to be embedded at selected joints along SLS instruments to enable the surgeon to transform them from their straight and slender shape to an articulated posture. The developed electromagnetic actuator is comprised of electromagnetic coil elements, a solid magnetic shell, and a permanent magnet used to enhance the magnetic field interaction along the force generation path and also to provide the latching effect. In this investigation, electromagnetic finite element analyses were conducted to design and optimise the actuator’s electromagnetic circuit. In addition, the performance of the new actuator was numerically and experimentally determined when output magnetic forces and torques in excess of 9 N and 45 mNm, respectively together with an angulation of 30° were achieved under a short pulse of current supply to the magnetic circuit of the actuator
    • …
    corecore