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ABSTRACT
Gravitational-wave data analysis demands sophisticated statistical noise models in a
bid to extract highly obscured signals from data. In Bayesian model comparison, we
choose among a landscape of models by comparing their marginal likelihoods. However,
this computation is numerically fraught and can be sensitive to arbitrary choices in the
specification of parameter priors. In Bayesian cross validation, we characterize the fit
and predictive power of a model by computing the Bayesian posterior of its parameters
in a training dataset, and then use that posterior to compute the averaged likelihood of
a different testing dataset. The resulting cross-validation scores are straightforward to
compute; they are insensitive to prior tuning; and they penalize unnecessarily complex
models that overfit the training data at the expense of predictive performance. In this
article, we discuss cross validation in the context of pulsar-timing-array data analysis,
and we exemplify its application to simulated pulsar data (where it successfully selects
the correct spectral index of a stochastic gravitational-wave background), and to a
pulsar dataset from the NANOGrav 11-year release (where it convincingly favors a
model that represents a transient feature in the interstellar medium). We argue that
cross validation offers a promising alternative to Bayesian model comparison, and we
discuss its use for gravitational-wave detection, by selecting or refuting models that
include a gravitational-wave component.

1 INTRODUCTION

Searches for gravitational waves (GWs) in pulsar-timing-
array (PTA) data (Lommen 2015; Burke-Spolaor 2015) seek
to identify weak GW signals among a plethora of other ef-
fects, including deterministic delays due to the relative mo-
tion of pulsar and observatory and to pulsar binary dynam-
ics, stochastic delays due to the interplanetary and interstel-
lar media, as well as intrinsic irregularities in the pulsar’s pe-
riod emission (Cordes 2013; Stinebring 2013). These searches
are commonly formulated as Bayesian-inference problems
(Gregory 2010), whereby we derive the joint posterior prob-
ability density of the GW parameters and of the noise pa-
rameters of all analyzed pulsars. Choosing appropriate prob-
abilistic models for pulsar noise is therefore crucial to reli-
able PTA searches (Taylor et al. 2013; Lentati et al. 2016;
Cordes & Shannon 2010): unmodeled noise components may
be interpreted as GWs, while overgenerous noise assump-
tions may reduce GW sensitivity. In current practice, pul-
sar noise models are informed by the physics of millisecond
pulsars and of the interplanetary/interstellar medium, but
they are largely driven by inference from PTA datasets, since
these often represent the best observations to date for PTA
pulsars.

2 MODEL COMPARISON

Within the data-analysis practice of the NANOGrav col-
laboration (NANOGrav 2019), Bayesian model comparison
(Gregory 2010) is used to select the noise model most appro-
priate to each pulsar (Arzoumanian et al. 2019). The goal
is not only to improve the physical characterization of the
processes affecting pulse times of arrival (TOAs), but also
to isolate these processes from a putative GW signal with
greater confidence. In this framework, we evaluate the fully
marginalized likelihood (a.k.a. evidence) for each model M :

p(y|M) =

∫
p(y|θM )p(θM ) dθM , (1)

where y denotes the observed data, θM the parameters of
model M , p(y|θM ) the likelihood (the probability of y given
θM ), and p(θM ) the prior probability density assigned to the
parameters. We then compare models by evaluating Bayes
ratios1 B21 = p(y|M2)/p(y|M1), either directly through Eq.
(1) (often requiring significant numerical sophistication, see

1 Bayesian model comparison calls for the computation of odds
ratios, which account for the prior relative probability of entire
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Trotta 2008) or by the Monte Carlo exploration of uber-
likelihoods that specialize to individual models depending
on the value of an index parameter (in which case the Bayes
ratio is given by the ratio of the “time” spent in each model,
see Godsill 2001; Sisson 2005). A large Bayes ratio B21 im-
plies that the data favors model M2 over M1. However, it is
difficult to give Bayes ratios a principled quantitative inter-
pretation. The exception are cases where alternative mod-
els represent exclusive physical outcomes; Bayes ratios can
then be calibrated in terms of statistical decision theory, by
relating their sampling distribution to false-alarm and false-
dismissal probabilities (see, e.g., Vallisneri 2012).

In choosing between alternative models for a dataset,
we need to be wary of overfitting : that is, while it is always
possible to improve model fit by adding parameters, the en-
hanced model may end up conforming to contingent noise
features instead of highlighting the physical properties of
interest. Correspondingly, the model loses predictive power
for yet-to-observed data. Bayesian model comparison incor-
porates a defense against overfitting, in that the evidence
integral penalizes fine tunings that restrict parameters to
small regions within their prior ranges. Unfortunately, this
defense creates a different, significant weakness—Bayes ra-
tios are then sensitive to parameter-prior assignments that
may be largely arbitrary, and are not testable from data
(Gelman et al. 2013). Consider for instance the case of two
nested models M1 ⊂ M2, where M2 is obtained by adding
parameter θ∗ to M1; let θ∗ have uniform prior in [−a, a],
with a arbitrarily assigned without cogent physical grounds;
finally, let the data constrain θ∗ to a small range close to 0.
It is then easy to see that B21 ∝ 1/a.

3 CROSS VALIDATION

An alternative framework for model comparison is offered
by measures of predictive performance, which quantify how
well a model that has been fit to dataset y can predict yet-
to-be-observed data ỹ (Gelman et al. 2013). These measures
penalize overfitting by construction, because a model that
conforms to contingent features in y will usually do worse in
fitting ỹ. In a Bayesian setting, a commonly adopted mea-
sure of predictive performance is the log predictive density
for the new data ỹ, as induced by the posterior p(θM |y):

log p(ỹ|y;M) = log

∫
p(ỹ|θM )p(θM |y) dθM . (2)

Ideally, we would average log p(ỹ|y;M) over the true distri-
bution of future data ỹ; doing so is however seldom possible.
In practice, we can: a) estimate within-sample predictive ac-
curacy using the data y that we already have, by applying
corrections for the overfitting bias, as in the various “infor-
mation criteria” (Gelman et al. 2013); b) evaluate out-of-
sample predictive accuracy on one or more holdout datasets
that were not used to infer parameter posteriors. The latter
approach is known as cross-validation, and we will pursue it
for PTA data in the rest of this article.

Specifically, we adopt k-fold cross validation as follows:

models. Since it is very difficult to attribute such priors on phys-

ical grounds, we generally work directly with Bayes ratios.
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Figure 1. Cross-validation analysis of a toy model. We gener-

ate the data d (upper panel) from f1(A,ω, ϕ) = A sin(ωt + ϕ)

(model 1), with the addition of white noise; we then analyze d
with f1 as well as f2(A,ω, ϕ, b) = A sin((ω+ bt)t+ ϕ) (model 2),

where parameter b describes an additional frequency drift. We

train both models on the first half of the data (the training set
dtrain, green in the plot), deriving the Bayesian posterior distribu-

tions p(A,ω, ϕ|dtrain, f1) and p(A,ω, ϕ, b|dtrain, f2). Using those

posteriors with Eq. (3) over the second half of the data (the val-
idation set dtest, red in the plot), we obtain log predictive densi-

ties −27.7 and −31.3 for models 1 and 2 respectively. The lower
density for model 2 indicates that it overfits the training data, re-

sulting in a poor fit to the validation set. The conclusion is borne

out by inspection of model residuals (lower panels), represented
in the plot as their averages and standard deviations over 300

posterior draws. Model-1 residuals are small and homogeneous

across both training and validation sets; model-2 residuals have
much larger bias and variance over the validation set, explaining

the lower predictive density.

(i) We divide the dataset y randomly in k exclusive sub-
sets y(k) (the testing datasets);

(ii) For each k, we derive the posterior p(θM |y(−k)), where
y(−k) = ∪j 6=ky(j) is the training dataset corresponding by

omitting y(k). We represent posteriors as sequences {θ(−k)
M,i }

of N quasi-independent samples, obtained by Monte Carlo
methods;

(iii) For each k, we evaluate the log predictive density
log p(y(k)|y(−k)), given by

log

∫
p(y(k)|θM )p(θM |y(−k)) dθ

' log
1

N

N∑
i=1

p(y(k)|θ(−k)
M,i ); (3)

(iv) We repeat this procedure for every model under con-
sideration, and then compare the respective log predictive
densities, averaged over the k repetitions. The variance of
the densities is a measure of their statistical uncertainty.

In Figure 1, we exemplify this process with a simple
toy problem: a sinusoidal signal parametrized by amplitude,
frequency, and phase, as modeled by that very model and
by an expanded model that includes a linear frequency drift.
The more complicated model results in significantly lower
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log predictive density, demonstrating that cross validation
can recognize and reject overfitting.

4 CROSS VALIDATION FOR SINGLE-PULSAR
NOISE MODELING

In current practice (see van Haasteren & Vallisneri 2014 for
a recent review), probabilistic noise models for pulsars are
built as the sum of a number of Gaussian processes (GPs;
Rasmussen & Williams 2006) representing all sources of cor-
related noise: errors in the parameters of the determinis-
tic timing model, pulsar-rotation irregularities, dispersion-
measure variations along the pulse propagation path, jitter-
like noise in multifrequency observations, and more. The
TOAs are also subject to “white” radiometer measurement
noise, conceptualized as independent and heteroskedastic
normal variates. Both the GPs and measurement noise are
governed by a set of hyperparameters (e.g., the amplitude
and spectral slope of delays due to rotation irregularities)
that are estimated from PTA datasets.

In keeping with basis–kernel duality for GPs, the model
likelihood can be written in two complementary ways. In
hierarchical form, the likelihood is given by

p(y|ηN , ηGP, cGP) = p(y|ηN , cGP)× p(cGP|ηGP)

=
e−(y−FGPcGP)TN−1(y−FGPcGP)/2√

(2π)n|N |
× e−c

T
GPΦ−1

GPcGP/2√
(2π)m|Φ|

,

(4)

where y is the vector of n timing residuals obtained by sub-
tracting the best-fit timing model from the observed pulse
times of arrival; the n ×m matrix FGP collects the m GP
basis vectors, and the cGP are the corresponding weights (or
coefficients); N (a function of the hyperparameters ηN ) is a
diagonal matrix expressing measurement-noise variance; and
ΦGP (a function of the hyperparameters ηGP) represents the
normal priors for the GP weights. In marginalized form, we
eliminate the dependence on the GP weights by integrating
over them (van Haasteren & Vallisneri 2014):

p(y|ηN , ηGP) =

∫
p(y|ηN , cGP, ηGP) dcGP

=
e−y

T (N+FGPΦGPF
T
GP)−1y/2√

(2π)n|N + FGPΦGPFTGP|
. (5)

The marginalized form is usually employed for the Monte
Carlo exploration of hyperparameter posteriors. The GP
weights can still be characterized by way of their conditional
posterior given the data and the hyperparameters, which
follows the jointly normal distribution p(cGP|y; ηN , ηGP) =
N (c̄,Σ) with mean

c̄(y; ηN , ηGP) = ΣFTGPN
−1y (6)

and covariance

Σ(ηN , ηGP) = (Φ−1
GP + FTGPN

−1FGP)−1. (7)

Armed with Eqs. (4)–(7), we perform steps 1–3 of k-fold
cross-validation for a single-pulsar dataset as follows:

(i) We partition the timing residuals y into exclusive test-
ing datasets y(k), making sure that each training dataset
y(−k) depends on all weights and hyperparameters. For

instance, for dispersion-measure variations described as
piecewise-constant “DMX” functions, each DMX epoch
must be populated by at least one residual in every y(k);
likewise, for “EFAC” measurement noise that is rescaled dif-
ferently in each radio backend, each backend must be repre-
sented in every y(k);

(ii) We sample the marginalized hyperparameter pos-
terior p(ηN , ηGP|y(−k)) [proportional to Eq. (5) times
prior p(ηN , ηGP)], using the PTA data-analysis package
Enterprise2 and the Markov Chain Monte Carlo sampler
PTMCMCSampler;3

(iii) For each of the N quasi-independent (η
(−k)
N,i , η

(−k)
GP,i)

obtained at step 2, we draw P weight vectors {c(−k)
GP,ij} from

their conditional distribution [Eqs. (6)–(7)], then we evalu-
ate the log predictive density by averaging the hierarchical
likelihood (4) over the N × P triples (η

(−k)
N,i , η

(−k)
GP,i , c

(−k)
GP,ij).

The “representation” condition imposed in step 1 is nec-
essary so that the parameters for which we derive posteriors
at step 2 fully specify the model’s prediction for each testing
dataset; this prediction is used in step 3 to evaluate the pre-
dictive density. Another important technical subtlety is that
the GP weights must conserve the same identity across all
y(−k) (for example, Fourier coefficients for the same set of
frequencies in the case of correlated spin noise); by contrast,
the GP basis vectors would change in value, because they
refer to different time-of-arrival measurements (continuing
our example, the basis elements would be sines and cosines
of the same frequencies for all subdatasets, but would be
evaluated at different times).

We note also that in step 2 we could have used the
hierarchical likelihood to sample the full parameter set
(ηN , ηGP, cGP), avoiding the conditional cGP draws at step 3.
However, the hierarchical likelihood is considerably harder
to explore stochastically. Also, in step 3 the sum over the
c
(−k)
GP,ij for each i could be replaced by analytical integration

in terms of c̄ and Σ, at the cost of some algebraic complica-
tion (see below for a related development).

5 RESULTS

To demonstrate how cross validation can be applied to PTA
noise-model selection, we first consider the simulated TOA
residuals for pulsar J1713+0747 from the 1st International
Pulsar Timing Array (IPTA) Data Challenge (Hazboun
et al. 2018).4 These residuals (130 values at 14-day cadence)
are generated from a simplified deterministic timing model
and a simple noise model: the timing model parameters de-
scribe the intrinsic-spin, astrometry, and binary-orbit prop-
erties of the pulsar; the noise model includes white measure-
ment noise (described by “EFAC” and “EQUAD” parame-
ters) and red correlated spin noise, specified by a power-law
spectrum (Arzoumanian et al. 2018b)

P (f) = A2
red

(
f

fyr

)−γred
, (8)

2 https://github.com/nanograv/enterprise
3 https://github.com/jellis18/PTMCMCSampler
4 http://ipta4gw.org/data-challenge
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Figure 2. Cross-validation analysis of power-law models for pul-
sar red noise, as demonstrated in the J1713+0747 dataset from

the 1st IPTA Mock Data Challenge. The dataset includes GW-

like correlated noise with spectral slope γred = 13/3. We per-
form two-fold cross validation using power-law models with inte-

ger γred ∈ [1, 6], as well as the correct γred = 13/3. For each γred,
we plot the average and standard deviation of the log predictive

density over five random shuffles of the data into training and

validation subsets. We adopt the standard deviation as a proxy
for the uncertainty of the predictive density. All values are shown

relative to the γred = 13/3 result (plotted in blue). Lower val-

ues of the spectral slope are clearly disfavored, while the dataset
cannot discriminate among slopes γred > 4, for which the charac-

teristic correlation timescale of red noise exceeds the span of the

measurements.

where Ared is the amplitude of the red-noise process in units
of µs × yr1/2, γred is its spectral index (set to 13/3 to gen-
erate the data), and fyr = 1 yr−1. We compare power-law
red-noise models with different γred by evaluating their re-
spective cross-validation predictive densities, shown in Fig-
ure 2 for γred ranging from 1 to 6. It is clear that a value
larger than 4 (and consistent with 13/3) is preferred.

Moving on to real PTA datasets, we perform two-fold
cross validation on the TOA residuals of pulsar J1713+0747
from the NANOGrav 11-yr data release (Arzoumanian et al.
2018a). As apparent in Figure 3 (from Arzoumanian et al.
2018a), around 2009 the residuals underwent a dispersion-
measure (DM) dip (i.e., an apparent decrease in the elec-
tron density experienced by radio pulses traveling to Earth,
resulting in reduced “fanning” across frequencies). We com-
pare two noise models: the first (GP+dip) represents DM
with a Gaussian process, but it includes also a transient
feature with exponential decay to represent the dip; the sec-
ond (GP-only) represents DM with the Gaussian process
alone. In keeping with the representation condition intro-
duced above, when we select the training dataset we need
to make sure that it includes a sufficient number of resid-
uals around the dip. To achieve this, we build the training
dataset by randomly selecting half of the residuals within
a one-year window centered around 2009 (see Figure 3), as
well as half of the residuals outside the window.

We perform two-fold cross validation 32 times with dif-
ferent random data partitions. The GP+dip model yields
consistently higher predictive densities than the GP-only
model, with delta log density 54.8+584.2

−19.9 (quoted as median
augmented by the 90% interquantile range). The stronger
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Figure 3. Residuals and dispersion-measure variation (DMX) for
pulsar J1713+0747 in the NANOGrav 11-yr data release (Arzou-

manian et al. 2018a). DMX shows a dramatic dip around year

2009. The dashed green vertical lines on the lower panel indicate
a one-year window centered around 2009. Colors in the upper

panel indicate observations taken at different radio frequencies:

Blue: 1.4 GHz; Purple: 2.1 GHz; Green: 820 MHz.

predictive performance of the GP+dip model offers statis-
tical evidence that the dip is a real physical feature. This
is confirmed by inspecting the reconstructed DM. The gray
bands in Figure 4 show the 90% interquantile range of re-
constructed DM over 100 posterior draws of the model pa-
rameters in a single cross-validation run, while the red line
traces the “true” DM at each epoch, as obtained by fitting
independent dispersion values to multifrequency data.5 It is
apparent that the GP+dip model captures the DM transient
more accurately, and that it follows the overall evolution of
DM with smaller variance. Both conditions result in higher
predictive density.

6 CROSS VALIDATION FOR GW DETECTION
IN MULTI-PULSAR DATASETS.

To perform cross validation on multi-pulsar datasets and
models (the latter possibly including a common GP describ-
ing the correlated delays induced by GWs for each pulsar),
we may proceed without change if we satisfy the representa-
tion condition: that is, if we partition the multi-pulsar resid-
ual vector, Y , into testing datasets Y (k) in such a way that
all parameters of every pulsar are represented in every train-
ing dataset Y (−k). However, it seems natural to partition Y
instead into subsets that correspond to individual pulsars,
or groups of individual pulsars. Such an arrangement may
allow us to identify pulsars contaminated by pathological
observations, pulsars that are poorly described by the noise
model chosen for them, or pulsars that are too noisy to con-
tribute to GW inference. We next discuss how to proceed
for this more general partitioning. We describe separately
the case of deterministic and stochastic GWs.

5 In PTA jargon, the red line shows the best-fit “DMX” param-
eters.
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Figure 4. Reconstructed dispersion measure according to the
GP+dip model (upper panel) and the GP-only model (lower

panel), shown as the 5% to 95% posterior interquantile range

(gray bands) in a single cross-validation run. “True” DM values,
as obtained by fitting independent “DMX” parameters at each

epoch, are plotted in red. The dashed vertical lines delimit the

one-year dip window. As apparent in the plot insets, the GP+dip
model captures the transient feature more accurately. Further-

more, the GP-only model pays the flexibility required to fit the

dip with higher variance across the entire data set. Both circum-
stances lead to higher predictive density for the GP+dip model;

in this particular run, the delta log density is 39.

For GWs described by deterministic models (e.g., iso-
lated supermassive black-hole binaries), individual pulsars
are described by the likelihoods of Eqs. (4) and (5), with
the replacement y → Y (a) − d(a)(θGW), where Y (a) is the
vector of timing residuals for pulsar a, where the θGW de-
scribe the GW parameters (a common set for all pulsars),
and where the d(a)(θGW) are the delays induced by the GWs
on pulsar a. In this case, cross validation would proceed as
follows: a) for each Y (−k) we would sample the joint pos-
terior distribution of the θGW and of the noise hyperpa-
rameters η

(−k)
N,GP describing the pulsars represented in Y (−k);

b) for each corresponding Y (k), we would evaluate the log
marginalized predictive likelihood

log

∫
p(Y (k)|η(k), θGW)p(θGW|Y (k))p(η(k)) dη(k) dθGW

' log
1

N

N∑
i=1

∫
p(Y (k)|η(k), θ

(−k)
GW,i)p(η

(k))dη(k), (9)

where the θ
(−k)
GW,i are Markov Chain (sub-)samples from the

training posterior p(θGW, η
(−k)
N,GP|Y

(−k)), and where we have
dropped the ηN,GP suffix for compactness. From an im-
plementation standpoint, the nested sum/integral in Eq.
(9) may require a dedicated stochastic algorithm similar to

those employed to evaluate the Bayesian evidence (Trotta
2008).

It is important to notice that Eq. (9) depends di-
rectly on the noise-hyperparameter priors p(η(k)), which in-
validates some of our motivation for computing predictive
likelihoods in the first place. In practice, we may worry
that we cannot compare predictive likelihoods for differ-
ent Y (k) because they have different prior “calibrations.”
With respect to this objection, it seems then natural to
consider the ratio of Eq. (9) to the noise-only evidence∫
p(Y (k)|η(k))p(η(k)) dη(k) (which in fact factorizes over the

pulsars in Y (k)). We leave to future work the exploration of
marginalized predictive likelihoods as GW detection statis-
tics, as well as the development of an efficient sampling
method for Eq. (9).

Last, for stochastic GWs described by their spectrum
and by their correlations across pulsars, we need to account
not only for the common GW parameters θGW, but also for
the correlations between the GW GP weights in each pulsar.
To sketch the mathematical structure of the problem with
more readable notation, let us consider the case of training
on pulsar 1 and testing on pulsar 2; formulas generalize read-
ily to k-fold–validation testing pairs (Y (−k), Y (k)). We do as

follows: We first obtain samples (η
(1)
i , θGW,i) from the poste-

rior p(η(1), θGW|Y (1)); we then evaluate the log marginalized
predictive likelihood in the form

log

N∑
i=1

∫
p(Y (2)|η(2), c

(2)
GW)p(c

(2)
GW|c

(1)
GW, θGW,i)×

p(c
(1)
GW|Y

(1); η
(1)
i , θGW,i) dη(2) dc

(2)
GW dc

(1)
GW. (10)

The integral over the c
(1)
GW can be performed analyti-

cally, and the resulting conditional prior for the c
(1)
GW ex-

pressed as

p(c
(2)
GW|Y

(1); η
(1)
i , θGW,i) = N (c̄(2)|(1),Σ(2)|(1)) (11)

with

c̄(2)|(1)(Y (1); η
(1)
i , θGW,i) = Φ21Φ−1

11 c̄
(1), (12)

and

Σ(2)|(1)(η
(1)
i , θGW,i)

= Φ22 − Φ21(Φ−1
11 − Φ−1

11 Σ(1)Φ−1
11 )Φ21, (13)

where c̄(1)(Y (1); η
(1)
i , θGW,i) and Σ(1)(η

(1)
i , θGW,i) are given

in Eqs. (6) and (7), and the Φij(θGW,i) denote the blocks
of the joint normal prior for the GW GP weights. The inte-
gral over the c

(2)
GW in Eq. (10) may also be performed an-

alytically by way of Eq. (5), with the replacement y →
Y (2) − F

(2)
GWc̄

(2)|(1) and ΦGW → Σ(2)|(1) (in this notation,

F
(2)
GW and ΦGW represent the GW blocks of FGP and ΦGP).

Again, we leave to future work the investigation of marginal-
ized predictive likelihoods as detection statistics for stochas-
tic GWs in PTA data.

7 DISCUSSION

The development of sophisticated noise models is of
paramount importance to ongoing PTA searches for

MNRAS 000, 000–000 (0000)
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nanohertz GWs, especially so because much of the PTA “in-
strument” was not engineered by humans. Contrast LIGO’s
precisely fabricated arms with a PTA Earth–pulsar “arm”,
which comprises a radiotelescope, a distant (∼ kpc) pul-
sar, and the expanse of spacetime in between. The tele-
scope admits some experimental control, since we can test
its signal response and mitigate noise in the receiver, but we
still have to contend with poorly constrained physical pro-
cesses in pulsar interiors and emission regions (Lasky et al.
2015), not to mention dispersive effects as radio pulses prop-
agate through the ionized interstellar medium to the Earth
(Cordes & Shannon 2010; Lam et al. 2019, 2018, 2016). Thus
PTA noise models must be well motivated physically, and
yet flexible enough to accommodate unknown unknowns, if
they are to allow the identification of subtle GW-induced
delays.

Current techniques to test the relative aptness and ro-
bustness of noise models include basic checks (i.e., evaluat-
ing χ2 fit residuals under different models), frequentist ap-
proaches (computing receiver operating characteristic curves
to maximize the signal detection probability at a given false-
alarm probability), as well as Bayesian model comparison
(Taylor et al. 2013, 2017; Sampson et al. 2015; Taylor et al.
2014; Cornish & Sampson 2016). In this last technique, we
marginalize likelihoods for different models over their respec-
tive prior volumes, and use the ratios of marginal likelihoods
(usually under the assumption of equal prior probabilities for
each model) to make statements about the posterior odds
with which one model is favored over the other. This ap-
proach is perfectly valid, but it can be troubled by practical
issues such as accurately integrating into the tails of the
likelihood distribution, as well as assigning the ranges of pa-
rameter priors in the first place.

Bayesian cross validation addresses some of these is-
sues by partitioning datasets into training and testing sam-
ples. Models are conditioned on the training set, producing
posterior probability distributions for the parameters, over
which we average the likelihood of the testing set. The cross-
validation score is then the probability of the test data under
the trained model. For reasonably informative training data,
posteriors will be more compact than the priors, shielding
the integration from ad hoc prior choices. To evaluate the
integrals, it is convenient to average the likelihood over pos-
terior samples from a conventional MCMC analysis of the
training set.

In this article we argued for the power of Bayesian
cross validation as applied to PTA data. Our case stud-
ies included the spectral characterization of a GW back-
ground, and the modeling of dispersive noise from the in-
terstellar medium. For the former, we performed two-fold
cross-validation on a dataset from the 1st IPTA mock data
challenge (Hazboun et al. 2018), showing that the data fa-
vored a correlated process consistent with a stochastic GW
background from supermassive binary black holes. For the
latter, two-fold cross-validation on 11 years of NANOGrav
data for pulsar J1713+0747 illustrated the necessity to in-
clude a transient dispersive noise feature around the year
2009, consistent with a void in the electron density along
the line of sight (Lentati et al. 2016). We also introduced a
formalism for multi-pulsar cross validation, where GW mod-
els conditioned on training data from a subarray are assessed
for predictive performance on left-out pulsars. In future work

we will investigate this approach as a tool to validate claims
of GW detections in real PTA datasets.

We expect cross validation to be similarly useful in an-
alyzing data from other GW detectors. For instance, within
the global network of ground-based GW interferometers,
support for a GW signal in one detector could be validated
using data from a different widely separated detector. Fur-
thermore, signals such as GW150914, which could have been
observed by a LISA-like detector years before it was seen
by LIGO (Sesana 2016), raise the prospect of multi-band,
multi-detector cross-validation of GW signals.
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