802 research outputs found

    ALUMINUMDODECATUNGSTOPHOSPHATE (Al0.9H0.3PW12O40) NANOTUBE AS A SOLID ACID CATALYST ONE-POT PRODUCTION OF BIODIESEL FROM WASTE COOKING OIL

    Get PDF
    Solid nanocatalyst aluminum dodecatungstophosphate (Al0.9H0.3PW12O40, abbreviated as AlPW) with nanotube structure was synthesized through a natural cellulose fiber template. The AlPW nanotubes, which are highly water-tolerant and acid-tolerant, can be described as green double acids, as they combine both Brønsted and Lewis acid sites. They have been applied as an efficient nanoheterogeneous catalyst for the preparation of biodiesel from waste cooking oil containing 26.89 wt% high free fatty acids (FFAs) and 1% moisture via esterification of FFAs and transesterification of triglycerides in one pot under mild conditions

    Fault-Tolerant Electro-Responsive Surfaces for Dynamic Micropattern Molds and Tunable Optics.

    Get PDF
    Electrically deformable surfaces based on dielectric elastomers have recently demonstrated controllable microscale roughness, ease of operation, fast response, and possibilities for programmable control. Potential applications include marine anti-biofouling, dynamic pattern generation, and voltage-controlled smart windows. Most of these systems, however, exhibit limited durability due to irreversible dielectric breakdown. Lowering device voltage to avoid this issue is hindered by an inadequate understanding of the electrically-induced wrinkling deformation as a function of the deformable elastic film thickness. Here we report responsive surfaces that overcome these shortcomings: we achieve fault-tolerant behavior based on the ability to self-insulate breakdown faults, and we enhance fundamental understanding of the system by quantifying the critical field necessary to induce wrinkles in films of different thickness and comparing to analytical models. We also observe new capabilities of these responsive surfaces, such as field amplification near local breakdown sites, which enable actuation and wrinkle pattern formation at lower applied voltages. We demonstrate the wide applicability of our responsive, fault-tolerant films by using our system for adjustable transparency films, tunable diffraction gratings, and a dynamic surface template/factory from which various static micropatterns can be molded on demand

    Potential of Akkermansia muciniphila and its outer membrane proteins as therapeutic targets for neuropsychological diseases

    Get PDF
    The gut microbiota varies dramatically among individuals, and changes over time within the same individual, due to diversities in genetic backgrounds, diet, nutrient supplementations and use of antibiotics. Up until now, studies on dysbiosis of microbiota have expanded to a wider range of diseases, with Akkermansia muciniphila at the cross spot of many of these diseases. A. muciniphila is a Gram-negative bacterium that produces short-chain fatty acids (SCFAs), and Amuc_1100 is one of its most highly expressed outer membrane proteins. This review aims to summarize current knowledge on correlations between A. muciniphila and involved neuropsychological diseases published in the last decade, with a focus on the potential of this bacterium and its outer membrane proteins as therapeutic targets for these diseases, on the basis of evidence accumulated from animal and clinical studies, as well as mechanisms of action from peripheral to central nervous system (CNS)

    Expression and aberrant promoter methylation of Wnt inhibitory factor-1 in human astrocytomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wnt inhibitory factor-1(WIF-1) acts as a Wnt-antagonists and tumor suppressor, but hypermethylation of WIF-1 gene promoter and low expression activate Wnt signaling aberrantly and induce the development of various human tumors. With this work we intended to investigate the expression and promoter methylation status of WIF-1 gene in human astrocytomas.</p> <p>Methods</p> <p>The tissue samples consisted of 53 astrocytomas and 6 normal brain tissues. The expression levels of WIF-1 were determined by immunohistochemistry and semiquantitative RT-PCR. The results were analyzed in correlation with clinicopathological data. Methylation status of WIF-1 gene promoter was investigated using methylation specific PCR. The relationship between methylation and expression of the genes was analyzed.</p> <p>Results</p> <p>The average expression levels of WIF-1 protein and mRNA in astrocytomas were decreased significantly compared with normal control tissues. The protein and mRNA expression of WIF-1 gene in astrocytomas was decreased with the increase of pathological grade. Furthermore, WIF-1 promoter methylation was observed by MS-PCR in astrocytomas which showed significant reduction of WIF-1 expression. The WIF-1 promoter hypermethylation was associated with reduced expression of WIF-1 expression.</p> <p>Conclusion</p> <p>Our results demonstrate that the WIF-1 gene is frequently down-regulated or silenced in astrocytomas by aberrant promoter methylation. This may be an important mechanism in astrocytoma carcinogenesis.</p

    Acute toxicity study of tilmicosin-loaded hydrogenated castor oil-solid lipid nanoparticles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previous studies demonstrated that tilmicosin-loaded hydrogenated castor oil solid lipid nanoparticles (Til-HCO-SLN) are a promising formulation for enhanced pharmacological activity and therapeutic efficacy in veterinary use. The purpose of this work was to evaluate the acute toxicity of Til-HCO-SLN.</p> <p>Methods</p> <p>Two nanoparticle doses were used for the study in ICR mice. The low dose (766 mg/kg.bw) with tilmicosin 7.5 times of the clinic dosage and below the median lethal dose (LD<sub>50</sub>) was subcutaneously administered twice on the first and 7th day. The single high dose (5 g/kg.bw) was the practical upper limit in an acute toxicity study and was administered subcutaneously on the first day. Blank HCO-SLN, native tilmicosin, and saline solution were included as controls. After medication, animals were monitored over 14 days, and then necropsied. Signs of toxicity were evaluated via mortality, symptoms of treatment effect, gross and microscopic pathology, and hematologic and biochemical parameters.</p> <p>Results</p> <p>After administration of native tilmicosin, all mice died within 2 h in the high dose group, in the low dose group 3 died after the first and 2 died after the second injections. The surviving mice in the tilmicosin low dose group showed hypoactivity, accelerated breath, gloomy spirit and lethargy. In contrast, all mice in Til-HCO-SLN and blank HCO-SLN groups survived at both low and high doses. The high nanoparticle dose induced transient clinical symptoms of treatment effect such as transient reversible action retardation, anorexy and gloomy spirit, increased spleen and liver coefficients and decreased heart coefficients, microscopic pathological changes of liver, spleen and heart, and minor changes in hematologic and biochemical parameters, but no adverse effects were observed in the nanoparticle low dose group.</p> <p>Conclusions</p> <p>The results revealed that the LD<sub>50 </sub>of Til-HCO-SLN and blank HCO-SLN exceeded 5 g/kg.bw and thus the nanoparticles are considered low toxic according to the toxicity categories of chemicals. Moreover, HCO-SLN significantly decreased the toxicity of tilmicosin. Normal clinic dosage of Til-HCO-SLN is safe as evaluated by acute toxicity.</p

    On Steam Pipe Network Modeling and Flow Rate Calculation

    Get PDF
    AbstractThe paper demonstrates the method to set up the pipe network hydraulic-thermal synthetic mode by applying hydraulic and thermal models of single pipe, and proposes the algorithm based on searching for the problem that iterative calculation sometimes cannot derive convergent reasonable result as well. Compared the calculated values with the measurements, it shows the validation of the model and effectiveness of the algorithm

    Detecting Energy Theft in Different Regions Based on Convolutional and Joint Distribution Adaptation

    Get PDF
    © 2023 IEEE. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TIM.2023.3291769Electricity theft has been a major concern all over the world. There are great differences in electricity consumption among residents from different regions. However, existing supervised methods of machine learning are not in detecting electricity theft from different regions, while the development of transfer learning provides a new view for solving the problem. Hence, an electricity-theft detection method based on Convolutional and Joint Distribution Adaptation(CJDA) is proposed. In particular, the model consists of three components: convolutional component (Conv), Marginal Distribution Adaptation(MDA) and Conditional Distribution Adaptation(CDA). The convolutional component can efficiently extract the customer’s electricity characteristics. The Marginal Distribution Adaptation can match marginal probability distributions and solve the discrepancies of residents from different regions while Conditional Distribution Adaptation can reduce the difference of the conditional probability distributions and enhance the discrimination of features between energy thieves and normal residents. As a result, the model can find a matrix to adapt the electricity residents in different regions to achieve electricity theft detection. The experiments are conducted on electricity consumption data from the Irish Smart Energy Trial and State Grid Corporation of China and metrics including ACC, Recall, FPR, AUC and F1Score are used for evaluation. Compared with other methods including some machine learning methods such as DT, RF and XGBoost, some deep learning methods such as RNN, CNN and Wide & Deep CNN and some up-to-date methods such as BDA, WBDA, ROCKET and MiniROCKET, our proposed method has a better effect on identifying electricity theft from different regions.Peer reviewe
    corecore