
1

Detecting Energy Theft in Different Regions Based
on Convolutional and Joint Distribution Adaptation

Jiangzhao Wang, Yanqing Zhu*, Yunpeng Gao, Ziwen Cai, Yichuang Sun, and Fenghua Peng

Abstract—Electricity theft has been a major concern all over
the world. There are great differences in electricity consump-
tion among residents from different regions. However, existing
supervised methods of machine learning are not in detecting
electricity theft from different regions, while the development of
transfer learning provides a new view for solving the problem.
Hence, an electricity-theft detection method based on Convolu-
tional and Joint Distribution Adaptation(CJDA) is proposed. In
particular, the model consists of three components: convolutional
component (Conv), Marginal Distribution Adaptation(MDA) and
Conditional Distribution Adaptation(CDA). The convolutional
component can efficiently extract the customer’s electricity char-
acteristics. The Marginal Distribution Adaptation can match
marginal probability distributions and solve the discrepancies of
residents from different regions while Conditional Distribution
Adaptation can reduce the difference of the conditional prob-
ability distributions and enhance the discrimination of features
between energy thieves and normal residents. As a result, the
model can find a matrix to adapt the electricity residents in
different regions to achieve electricity theft detection. The exper-
iments are conducted on electricity consumption data from the
Irish Smart Energy Trial and State Grid Corporation of China
and metrics including ACC, Recall, FPR, AUC and F1Score are
used for evaluation. Compared with other methods including
some machine learning methods such as DT, RF and XGBoost,
some deep learning methods such as RNN, CNN and Wide &
Deep CNN and some up-to-date methods such as BDA, WBDA,
ROCKET and MiniROCKET, our proposed method has a better
effect on identifying electricity theft from different regions.

Index Terms—energy theft; different regions; supervised learn-
ing; Irish Smart Energy Trial

I. INTRODUCTION

ENERGY theft has been a major concern for a long time.
According to incomplete statistics[1], power companies

in different regions suffer huge losses due to energy theft every
year. In the United States, power companies lose about $6 bil-
lion due to abnormal power consumption, while power utilities
in Canada lose $500 million every year as well. In China, the
economic loss caused by abnormal power consumption can
be about 20 billion RMB. Especially in some Southeast Asian
countries, it can bring even more losses. In addition, methods
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of stealing electricity also harm the stability of the power grid,
which can easily lead to electrical accidents such as a large-
area blackout. Therefore, a method that can efficiently detect
energy theft is urgently needed.

Several existing approaches to electricity theft detection,
including hardware and network structure-based detection
schemes, require access to a large amount of private in-
formation about the user. To prevent the disclosure of this
information, we need to analyze the security and reliability of
the model, such as the safety assessment[2] of the Belief Rule
Base model[3]. To prevent such problems, current methods of
detecting energy theft are mainly based on machine learning.
These methods mainly realize the abnormal users’ detection by
analyzing customers’ historical power consumption data along
with other exterior data.[4] The current detection methods
based on machine learning can be divided into supervised
learning and unsupervised learning.

Unsupervised learning does not require a training set, a
labeled data set. Therefore, unsupervised methods for power
theft detection can essentially be explained by searching
outliers in high-dimensional space. Zheng et al.[5] combined
the Maximum Information Coefficient and the Clustering-
technique by Fast Search and Find of Density Peaks to detect
electricity theft. Biswas et al.[6] proposed energy loss coeffi-
cient and honest coefficient to evaluate the suspicion level of
a consumer’s reported energy consumption pattern. Krishna
et al.[7] extended prior work on the design of approaches
to detect electricity theft and presented the study of meter
fraud in the context of Distributed Energy Resources. Sun et
al.[8] proposed an improved outlier detection method based on
the Gaussian kernel function. Tian et al.[9] proposed a power
system power consumption anomaly analysis algorithm based
on density clustering technology. Zhuang et al.[10] proposed
an improved local outlier factor algorithm, which was suitable
for the case where there is a lack of training samples in the
power customer data. Yuan et al.[11] proposed an abnormal
power consumption pattern identification method based on an
unsupervised combination algorithm. Qi et al.[12] proposed a
novel unsupervised data-driven method for detecting abnormal
users, which incorporates observer meter data, wavelet-based
feature extraction, and fuzzy c-means clustering.

On the contrary, supervised algorithms require a labeled
data set to build a model and have a better detection effect.
Supervised methods mainly include logistic regression[13],
Support Vector Machine[14–16], Decision Tree[17, 18], and
Neural Network[18–21]. An abnormal power consumption
detection algorithm with a secondary screening of the Lo-
gistic Regression Algorithm was proposed in [13]. Messinis
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et al.[14] selected voltage sensitivity analysis, power system
optimization and Support Vector Machine to detect NTL in
distribution network under various conditions. Jindal et al.[15]
proposed a top-down synthesis scheme based on Decision
Tree and Support Vector Machine. Jokar et al.[16] proposed
a new energy theft detector based on consumption mode.
Yan et al.[17] proposed a metering data-stealing detector
based on XGBoost. Guerrero et al.[18] presented a framework
and methodology, developed as two coordinated modules,
that improves this type of inspection. One module is based
on text mining for customer filtering and a complementary
artificial neural network. The other module is developed from
the data mining process and contains a Classification and
Regression Tree and a Self-Organizing Map neural network.
Zheng et al.[19] proposed a wide and deep convolution neural
network for power theft detection. Gao et al.[20] proposes
a convolutional long short-term memory based energy theft
detection model to identify electricity theft users. Buzau et
al.[21] proposed a new end-to-end solution, which used a
hybrid depth neural network to learn the anomaly and fraud
detection features in smart meters.

Most of these supervised algorithms have two limitations.
The one is that they mainly select a single set, which
comes from the Irish Smart Energy Trial[14, 16, 17] or
State Grid Corporation of China[19]. However, people from
different regions have different habits. Hence, these supervised
methods[22–24] of machine learning are not effective in
detecting electricity theft from different regions. The other is
that they primarily select several data from the Irish Smart
Energy Trial for their studies and generate malicious customers
by using formulas to falsify each data but not considering the
periodicity of electricity consumption. It is likely to obtain the
power consumption behavior of another normal user, who has
fewer appliances but the same electricity habit.

With the development of transfer learning as there are lots
of applications of transfer learning in electricity, like non-
intrusive load monitoring[25] and load forecasting[26]. Hence,
an energy-theft detection framework based on Convolutional
and Joint Distribution Adaptation is presented, which could
overcome some related problems of existing methods. The
main contributions of our paper are as follows.

1) A method based on Convolutional and Joint Distribution
Adaptation: We propose a method for electricity theft detection
based on Convolutional and Joint Distribution Adaptation. The
model consists of three components: convolutional component
(Conv), Marginal Distribution Adaptation(MDA) and Condi-
tional Distribution Adaptation(CDA). The convolutional com-
ponent can efficiently extract the customer’s electricity char-
acteristics of the customer. Through the Marginal Distribution
Adaptation and Conditional Distribution Adaptation, a transfer
matrix can be found to adapt the electricity characteristics of
customers to achieve cross-domain electricity theft detection.

2)Comprehensive experiments: To verify the effectiveness
of our method, we optimize the existing power theft generation
formulas and construct several cross-regional data sets based
on data sets from the Irish Smart Energy Trial (ISET) and
the State Grid Corporation of China (SGCC) to conduct
experiments. The consumption of several weeks is selected

for our research, and only a part of the user’s weekly data is
tampered with by the formulas due to the strong correlation
between the electricity consumption data of normal customers
and the weak correlation between the electricity consumption
of energy thieves[19]. The effectiveness and superiority of our
method are validated by experimenting with different types of
electricity theft based on cross-regional data sets.

The remaining paper is organized as follows. Proposed
method is presented in Section II. The experiments and results
are shown in Section III. Section IV finally concludes the
paper.

II. PROPOSED METHOD

Traditional supervised learning assumes that the distribution
of the training and test data and the learning task are both
the same. In many existing works of energy theft detection,
training and test data are derived from a data set. The model is
trained on the training set and tested on the test set. However,
the test set is not controllable. In other words, the distribution
of the test set is not the same as that of the training set, so
an over-fitting problem can occur. The training results of the
model are excellent, but the test results are not ideal. That is
because the features of users are not clear, which results in a
lower accuracy rate of identification. To address this problem,
Convolutional and Joint Distribution Adaptation is proposed,
which can find a metric to transfer the training set and test set
to obtain two new sets with a similar distribution.

A. The principle of CJDA

An energy-theft detection method based on Convolutional
and Joint Distribution Adaptation could identify energy thieves
from different regions. The energy theft detection framework
based on CJDA is shown in Fig.1. The learning manner
of our proposed approach is a supervised domain learning
method of transfer learning. The input of the framework is
two data sets, the source domain and the target domain.
In this paper, the source domain, a training set, is from
ISET, while the target domain, a test set, is from SGCC.
The convolutional component extracts features, while MDA
and CDA are utilized for adapting marginal and conditional
distribution, respectively, to adjust and optimize the datasets
for training and test. The data sets are then used to train
and test a stacking classifier based on Random Forest (RF)
and Support Vector Machine (SVM) because they are well-
established and widely used classification algorithms and are
commonly used for electricity theft detection like [15]. Finally,
the target domain with the labels is output by the trained
stacking classifier. Therefore, the electricity theft customers
in different regions can be identified by our scheme.

1) Convolutional Component: The convolutional compo-
nent consists of several convolutional units, and the parameters
of each unit are given. The purpose of the convolution opera-
tion is to extract the different features of consumption. In this
paper, the convolutional component can extract a large number
of features including edge and line features for marginal
distribution adaptation.
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Fig. 1. Energy theft detection framework based on Convolutional and Joint Distribution Adaptation

Fig. 2. Electricity consumption of normal and abnormal users with and
without the convolutional component

For analysis, Fig.2 shows the electricity consumption char-
acteristics of normal and abnormal users before and af-
ter they are filtered by the convolutional component. From
that, the fluctuation of power curves with convolutional
component becomes smaller. Compared with the curve of
abnormal users, the curve of normal users is closer to
ElectricityConsumption = 0 and less volatile with con-
volutional component.

2) Marginal Distribution Adaptation: A marginal distri-
bution adaptation network is developed to learn a nonlinear
subspace to match the marginal probability distributions. For
marginal distribution, the empirical maximum mean dispersion
(MMD) is to measure the distance between the marginal
distribution of the source domain and target domain p(xs) and

p(xt). The goal is to minimize the marginal distribution of the
source domain and the target domain as much as possible.

MMD of the marginal distribution is computed as follows.

MMD (xs, xt) =

∥∥∥∥∥∥ 1

n

n∑
i=1

ATxi −
1

m

n+m∑
j=n+1

ATxj

∥∥∥∥∥∥
2

= tr
(
ATXM0X

TA
) (1)

where n and m stand for the number of samples in the
source domain and the target domain, respectively. A is the
transformation matrix to project data into the feature space. X
is the combined data of the source domain and target domain.
xs and xt stand for the data of the source domain and target
domain, respectively. M0 is the MMD matrix by the following
equations:

(M0)ij =


1
n2 1 ≤ i, j ≤ n
1

m2 n < i, j ≤ n+m

− 1
mn otherwise.

(2)

3) Conditional Distribution Adaptation: In classification
tasks, minimizing the discrepancies of conditional probability
distributions across domains is crucial. Unfortunately, it is
impossible to match the conditional distributions based on the
same transformation matrix, A with no labeled data in the
target domain. To address it, the pseudo labels of the target
data are proposed, which can be easily predicted by applying
some base classifiers trained on the labeled source data to
the unlabeled target data. Hence, there is a transformation
matrix A, which can be utilized to minimize the distance
between the conditional distribution of the source domain and
target domain, p(yt|xt) and p(ys|xs). The specific steps are
as follows.
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According to the class-conditional probability, (xt|yt) and
Bayesian formula, Equation(3) occurs.

p (yt | xt) = p (yt) p (xt | yt) . (3)

The pseudo labels ŷt of the target data can be predicted
by applying the stacking classifier trained on the source
data, (xs, ys), to the unlabeled target data, xt. Conveniently,
p(ys|xs) is denoted as Qs, and p(ŷt|xt) is denoted as Qt.
According to the pseudo label, the MMD of the conditional
distribution is computed as follows.

MMD (Qs, Qt) =
C∑

c=1

∥∥∥∥∥∥ 1

nc

nc∑
i=1

ATxi −
1

mc

nc+mc∑
j=nc+1

ATxi

∥∥∥∥∥∥
2

=
C∑

c=1

tr
(
ATXMcX

TA
) (4)

where c = 1, ...C, nc and mc are the number of class c sam-
ples in the source domain and the target domain, respectively.
Mc is as follows.

(Mc)ij =



1
n2
c

1 ≤ i, j ≤ nc
1

m2
c

n < i, j ≤ nc +mc

− 1
mcnc

{
1 ≤ i ≤ nc < j ≤ nc +mc

1 ≤ j ≤ nc < i ≤ nc +mc

0 otherwise.

(5)

4) Convolutional and Joint Distribution Adaptation: Com-
bine Equation(1) and (4), and then the overall optimization
objective function is obtained.

min

C∑
c=0

tr
(
ATXMcX

TA
)

+ λ‖A‖2F (6)

where λ is the regularization parameter, and λ‖A‖2F is the
regularization term, which is applied to guarantee the opti-
mization problem is well-defined.

The variance of data between the source and target domain
is the same, so the following equation is obtained.

I = ATXHXTA (7)

where H is a central matrix and I is an identity matrix.
Hence, we can get Equation (8).

min
∑C

c=0 tr
(
ATXMcX

TA
)

+ λ‖A‖2F
s.t. ATXHXTA = I.

(8)

According to the constrained optimization theory, the La-
grange multiplier method is used to solve Equation (8), and a
new equation is got.

L = tr

(
AT

(
X

c∑
c=0

McX
T + λI

)
A

)
+ tr

((
I −ATXHXTA

)
Φ
) (9)

where Φ is diag(φ1, ..., φk) ∈ Rk∗k, which stands for the
Lagrange multiplier.

Then, taking the derivative of A with L and making the
derivative equal to 0, we can obtain Equation(10).(

X

c∑
c=0

McX
T + λI

)
A = XHXTAΦ. (10)

In this equation, the new pseudo labels ŷt are obtained by
iterative updating, and the transformation matrix A is found
again according to the optimization target, further reducing
the distribution difference between the source domain and the
target domain until the algorithm converges.

B. The Flow of CJDA

For several-week electricity consumption data of all cus-
tomers, one customer’s consumption data xf ∈ XF corre-
sponds to one label y ∈ Y for each customer. xfs ∈ XFs and
xft ∈ XFt stand for the customers in the source domain and
target domain. ys ∈ Ys and yt ∈ Yt stand for the electricity
consumption data in the source domain and target domain.

The purpose of CJDA is to find a transformation matrix A
to reduce the marginal and conditional distribution differences
between XFsand XFt after extracting electricity features by
applying the convolutional component. Therefore, the flow
steps of the CJDA are shown below.

Step 1: Input the customers’ electricity consumption matrix,
Xf (XFs, XFt), and labeling matrix in the source domain, Ys.

Step 2: Extract the electricity consumption features matrix,
X(Xs, Xt), by applying the convolutional component to the
electricity consumption matrix, XF (XFs, XFt).

Step 3: Construct M0 by Equation (2), and set Mc = 0.
Step 4: Train a stacking classifier on (Xs, Ys) to obtain the

pseudo target label Ŷt with Xt, and then construct the matrix
A by Equation(10).

Step 5: Train a stacking classifier on (ATXs, Ys) to update
the pseudo target label Ŷt with ATXt and the matrix A.

Step 6: If equation(10) convergence or the maximum num-
ber of iteration cycles is reached, return an adaptive stacking
classifier f trained on (ATXs, Ys), and transformation matrix
A. If not, update Mc by Equation (5) and return to Step 5.

Step 7: Calculate ATXt, import it into the adaptive Stacking
classifier, and finally output Yt.

III. EXPERIMENT AND ANALYSIS

To verify and test the feasibility and detection effect of the
proposed framework, the computer (i5-12600k 3.69GHz and
16G RAM) is applied for simulation in Python 3.7. Indexes
such as ACC, Recall, FPR, AUC, and F1Score, are used to
evaluate the effectiveness in TABLE I.

A. Data preparation

In the literature, most articles primarily select several days
for their studies and generate malicious customers by using
formulas to falsify each piece of data. However, there is
a strong correlation of normal customers’ weekly electricity
consumption and a weak correlation of malicious customers’
weekly electricity consumption[19]. It is likely to obtain the
power consumption behavior of another normal user, who has
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TABLE I
INDEXES FOR EVALUATION OF ENERGY THEFT DETECTION

Indexes Introduction

ACC Ratio of correctly predicted samples to predicted samples
Recall Ratio of predicted positive samples to real positive samples
FPR Ratio of predicted as positive samples in real negative samples
AUC Area under ROC curve

F1Score Weighted harmonic average of precision and recall

fewer appliances but the same electricity habit. To avoid this,
several weeks of the user’s data are selected and only part of
the user’s weekly data is tampered with.

1) Data processing: The experiments are conducted on two
data sets, the ISET data set, and the SGCC data set. ISET data
set comes from the Irish Smart Energy Trial. It includes half-
hourly active energy consumption of about 5000 residential
and commercial consumers during 2009 and 2010. SGCC data
set was released by the State Grid Corporation of China. It
contains the electricity consumption data every day of 42,372
electricity customers within 1035 days (from January 1, 2014
to October 31, 2016).

For conducting our experiments, the load data of ISET is
converted to daily load as the following formula.

xnew(i) =

48∑
j=1

x(i ∗ 48 + j − 48) for i = 1, . . . , n (11)

where x(i) stands for the value in the electricity consumption
data of ISET. xnew(i) stands for the value in the daily
electricity consumption data of ISET.

2) Malicious sample generating: In [16], six types of mali-
cious samples are generated by six formulas and two of them
represent attacks against billing mechanisms in which the price
of electricity varies over different hours of the day. However,
the minimum unit of power load of State Grid data is the
day. Hence, those two of them cannot be regarded as stealing
electricity. Then based on the data set of benign samples, we
generate four types of malicious samples in TABLE II.

TABLE II
FOUR TYPES OF MODIFYING NOMARL USER LOAD

Attack Types Modification

Type 1 f1(xt) = αxt, 0.2 < α < 0.8
Type 2 f2(xt) = αtxt, 0.2 < αt < 0.8

Type 3 f3(xt) = βxt, β =

{
1 if t1 < t < t2
0 otherwise

Type 4 f4(xt) = αtx, 0.2 < αt < 0.8

In TABLE II, tampering methods can be explained as
follows.

1) f1(∗) multiplies all the samples by the same randomly
chosen value α;

2) f2(∗) multiplies each meter reading by a different ran-
dom number;

3) f3(∗) means the smart meter does not send its measure-
ments or sends zero for a random duration;

4) f4(∗) multiplies the value of the average of each meter
reading over the week by a different random number.

Several weeks of the data are selected and only part of the
weekly data is tampered with. Finally, many more reasonable
malicious samples are generated.

B. Constructing training set and test set
To deal with different regions with different electricity

behavior, different data sets are used for test and training.
In other words, ISET is adopted as the training set, and
SGCC is adopted as the test set. Hence, 2500 samples of
ISET, and 10000 samples of SGCC are selected for conducting
the training and test set respectively, and some of them are
tampered with. Hence, four-week consumption is selected for
research, and the second-week data are tampered with by
formulas. An example of one-week consumption of a customer
of two regions is shown in Fig 3 and 4. Five data sets
are obtained for experiments based on four types of attacks,
including the first attack data set, the second attack data set,
the third attack data set, the fourth attack data set, and the mix
of four attack data set. These five data sets are constructed as
shown in TABLE III.

TABLE III
RATIO BETWEEN ABNORMAL AND NORMAL CUSTOMERS OF FIVE TYPES

OF ATTACK DATA SETS

Data sets Training
(built by ISET)

Test
(built by SGCC)

1st type attack data set 1 : 1 1 : 1
2nd type attack data set 1 : 1 1 : 1
3rd type attack data set 1 : 1 1 : 1
4th type attack data set 1 : 1 1 : 1

Mixed-type attack data set 4(1 : 1 : 1 : 1) : 1 4(1 : 1 : 1 : 1) : 1

Fig. 3. Example of one-week consumption and attack patterns of ISET

C. Indexes evaluation based on our method
To identify energy theft in different regions, an electricity-

theft detection framework based on Convolutional and Joint
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Fig. 4. Example of one-week consumption and attack patterns of SGCC

Distribution Adaptation is proposed. We organize relative
experiments to examine the performance of our framework.
Five data sets in TABLE III are used to perform experiments.
Results are shown in TABLE IV.

TABLE IV
DETECTION RESULTS FOR THE FIVE DATA SETS

Type of Attack ACC (%) Recall (%) FPR (%) AUC(%)) F1Score (%)

1st type attack 82.41 80.16 15.34 90.15 82.01
2nd type attack 93.15 93.10 6.80 97.54 93.15
3rd type attack 99.32 99.00 0.36 99.95 99.32
4th type attack 95.52 95.68 4.64 98.75 95.53

Mixed-type attack 91.77 96.86 28.60 95.30 94.96

From TABLE IV, the results of five experiments show
that our method has high ACC, high Recall, low FPR, high
AUC, and high F1Score, in identifying electricity theft from
different areas. High ACC means that our method can identify
normal and abnormal customers. Identifying customers who
steal electricity is important. Hence, a high recall value brings
a high probability of predicting the actual energy theft. FPR
is the ratio of electricity theft customers mistaken as normal
customers to all electricity theft customers. In other words, the
lower the FPR, the more effective the model is in detecting
electricity theft customers. AUC is the area under the ROC
curve. The closer the AUC is to 1.0, the higher the authenticity
of the test method. F1Score is an important index of a model.
A high F1Score means the model is of high quality.

From the results, we can find that our framework can
easily identify different types of attacks on customers from
different areas correctly. After convolution processing, We find
a transformation matrix A to adapt both Marginal Distribution
Adaptation and Conditional Distribution Adaptation based on
ISET and SGCC. MDA can match marginal probability distri-
butions and solve the dimensional discrepancies of residents
from different regions and CDA can reduce the difference
in the conditional probability distributions and enhance the
discrimination of features between energy thieves and normal
residents. As the results suggest, our framework can detect

energy theft from different regions.

D. Indexes comparisons of different methods

In this subsection, we conduct several comparative experi-
ments with some existing methods.

1) Existing Methods for Comparison: In this part, we
choose some machine learning methods, some deep learning
methods and some other up-to-date methods for comparison.

Joint distribution adaptation is the origin of our method,
which aims to jointly adapt both the marginal distribution and
conditional distribution in a principled dimensionality reduc-
tion procedure, and construct new feature representation[30].

Machine learning methods include Decision Tree (DT),
Random Forest (RF) and Extreme Gradient Boosting
(XGBoost)[17]. RF is an ensemble method that consists of
many decision trees. XGBoost is one of the best algorithms for
fitting the true distribution among supervised machine learning
algorithms. Its core idea is to select an additive mode to reduce
the residuals generated for classification and regression during
the training process.

Deep learning methods include Recurrent Neural Network
(RNN) and Wide & Deep CNN Network (WCNN)[19]. Con-
volutional Neural Network (CNN) is a deep learning method
that is commonly used for classification. A recurrent neural
network is a deep learning network structure that is typically
used to process time series. The wide and deep CNN model
consists of two components: the wide component and the deep
CNN component. The combination of two components can
accurately identify the non-periodicity of electricity theft.

Some other up-to-date methods include Balanced Distri-
bution Adaptation (BDA), Weighted and Balanced Distribu-
tion Adaptation (WBDA)[27], Random Convolutional Kernel
Transform (ROCKET)[28], Minimally Random Convolutional
Kernel Transform (MiniROCKET)[29]. BDA and WBDA are
derivatives of the algorithm proposed in the article, while
ROCKET and MiniROCKET can achieve state-of-the-art time
series classification accuracy by transforming the input time
series with a random convolutional kernel and using the
transformed features to train a linear classifier.

2) Performance Metrics: Mean Average Precision (MAP)
is often used to judge the performance of the target detection
algorithm. In this paper, this metric is used for comparisons,
which is obtained by a combined weighted average of the
average correct rate for all categories of tests.[19]

3) Performance comparisons: TABLE V presents the per-
formance comparison of the CJDA scheme and other schemes.
We conduct five groups of experiments with five data sets in
TABLE III. During the experiment, the parameter settings of
other algorithms follow the rules. For some traditional methods
such as DT, RF, and CNN, we use the default parameters ac-
cording to the general guidelines. For other methods, including
XGBoost [17], WCNN [19],WBDA [27], ROCKET [28] and
MiniROCKET [29], we set the relevant parameters according
to their original papers for electricity theft detection. In each
group of experiments, we evaluate performance metrics (ACC,
MAP@100, and MAP@200) for these schemes. It is shown in
TABLE V that our proposed scheme performs better than these
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TABLE V
PERFORMANCE COMPARISON OF OUR PROPOSED CJDA MODEL AND OTHER CONVENTIONAL SCHEMES

Methods 1st type attack 2nd type attack 3rd type attack 4th type attack Mixed-type attack

ACC
(%))

MAP@
100(%)

MAP@
200(%)

ACC
(%))

MAP@
100(%)

MAP@
200(%)

ACC
(%))

MAP@
100(%)

MAP@
200(%)

ACC
(%))

MAP@
100(%)

MAP@
200(%)

ACC
(%))

MAP@
100(%)

MAP@
200(%)

DT 54.77 79.70 53.46 61.71 77.64 77.02 89.63 99.64 99.15 66.24 68.70 71.51 54.77 79.70 53.46
RF 50.07 58.82 55.26 54.26 62.66 60.25 91.33 90.54 91.69 54.82 63.56 61.30 81.41 54.42 54.48

XGBoost[17] 50.39 56.93 55.58 53.73 49.64 50.64 91.79 89.86 91.22 54.94 59.53 58.39 56.42 56.67 55.41
RNN 55.21 79.19 80.45 49.94 80.69 78.62 81.27 92.79 93.73 45.95 14.10 14.29 79.99 69.10 69.99
CNN 49.98 73.44 79.06 49.68 73.21 72.64 50.06 78.51 76.91 50.10 82.52 81.53 79.90 52.89 51.58

WCNN[19] 81.55 81.21 81.59 91.69 92.65 92.34 96.47 92.49 93.84 88.26 88.21 88.34 80.55 51.52 51.42
BDA 75.61 75.98 75.94 90.10 89.62 90.30 99.11 99.45 99.22 92.05 90.20 91.22 91.72 89.30 89.03

WBDA [27] 79.70 81.21 81.59 90.61 89.62 90.11 99.12 97.30 97.97 91.70 91.12 91.85 91.61 89.30 89.09
ROCKET[28] 59.20 30.45 30.52 60.78 42.34 42.98 79.37 94.78 95.28 60.08 84.50 84.04 57.50 47.89 48.77

MiniROCKET[29] 50.09 69.78 72.30 50.11 72.89 74.31 53.96 76.28 76.28 50.37 92.45 94.61 80.22 82.76 83.65
JDA[30] 79.64 75.41 78.43 91.99 90.98 91.75 99.24 99.45 99.22 92.39 91.12 91.85 90.23 76.37 77.79
CJDA 82.41 83.82 83.10 93.15 94.12 93.91 99.32 98.99 98.96 95.52 94.86 95.30 91.77 86.11 85.66

machine learning including DT, RF and XGBoost[17] and
deep learning methods such as CNN, RNN and WCNN[19].
For example, the CJDA scheme can achieve the maximum
MAP@200 value of 95.30 compared with other schemes in
the 4th type attack data set. This implies that our method has
the best identification of energy theft among these methods.

Although electricity thieves in different regions steal elec-
tricity with the same methods, the electricity consumption
behavior of customers in different regions can seriously affect
the judgment of models, such as RF, XGBoost and WCNN.
In domain learning, the electricity consumption behavior of
customers in different regions can be regarded as different
distributions. As we all know, the real set of electricity con-
sumption data is not controllable, it tends to have a different
distribution than the training set. Hence, training samples and
test samples have different distributions. Although RF, XG-
Boost and WCNN are the best algorithms for fitting the true
distribution among supervised machine learning algorithms,
their identification effect of electricity theft from different
distributions is very poor.

E. Parameter study of the convolutional component

We then investigate the impacts of various parameters on the
performance of the Convolutional component of our scheme.

1) Effect of numbers of the convolutional layers M : We
choose M to control the number of convolutional layers in
CJDA. To investigate the impact of M on prediction results,
we vary the value of M from 0 to 5 with the step value of
1 considering the absence of the convolutional component.
The experiment results are shown in Table VI. Overall, the

TABLE VI
IMPACT OF M ON THE EFFECT OF OUR SCHEME

Numbers of Conv Mixed-type attack

layers M ACC(%) MAP@100(%) MAP@200(%)

0 90.23 76.37 77.79
1 91.77 86.11 85.66
2 91.27 79.82 82.93
3 91.42 82.42 83.21
4 91.57 81.82 83.05
5 91.24 80.40 81.60

convolutional component in CJDA can extract a large number
of features including edge and line features for marginal
distribution adaptation, but the increased number of layers can
diminish the performance.

2) Effect of strides value of the convolutional layers S:
We choose S to control the strides value of convolutional
layers in CJDA. To investigate the impact of S on prediction
results, we vary the value of S from 1 to 9 with the step value
of 2. The experiment result is shown in Table VII. Overall,
the increased strides value make more data lost, hence the
prediction performance is poor.

TABLE VII
IMPACT OF S ON THE EFFECT OF OUR SCHEME

Steps value of Mixed-type attack

Conv layers S ACC(%) MAP@100(%) MAP@200(%)

1 91.77 86.11 85.66
3 89.14 78.27 78.93
5 81.47 57.47 57.38
7 81.34 58.94 60.02
9 79.88 53.01 52.18

Fig. 5. Impact of L on the Effect of our scheme
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3) Effect of the length of convolution window L: We choose
L to control the length of the convolution window in CJDA.
To analyze the impact of the window length on detection
results, we conduct a comprehensive parameter study. It is
worth noting that there is a strong correlation of normal
customers’ weekly electricity consumption according to [19].
The maximum length for the convolution window is set to 1.5
times the length of the cycle. Therefore, we systematically
vary its value L from 1 to 10, incrementing by a step value
of 1. The experiment result is shown in Fig. 5. From that, the
increased length of the convolution window enhances and then
weakens the prediction performance. The best performance is
got when L = 7 due to the strong correlation of the user’s
weekly data.

IV. CONCLUSION

In this paper, a method for energy theft detection based on
Convolutional and Joint Distribution Adaptation is proposed,
which is composed of Convolutional Component, Marginal
Distribution Adaptation and Conditional Distribution Adapta-
tion. The convolutional component can efficiently extract the
customer’s electricity characteristics. Through the Marginal
Distribution Adaptation and Conditional Distribution Adap-
tation, a transfer matrix can be found to adapt the electricity
characteristics of customers to achieve cross-domain electricity
theft detection while other supervised methods cannot. To
demonstrate the effectiveness, we conduct extensive experi-
ments on real electricity consumption data released by the Irish
Smart Energy Trial and State Grid of China Corporation. With
ISET for training and SGCC for the test, several experiments
are conducted on different types of electricity theft. The
experimental results show that our method outperforms other
supervised algorithms.

Although our method can detect energy theft in different
regions, it is difficult to obtain enough theft data to train
our model in engineering practice. In the follow-up study, we
will explore how to train a good model with small samples
and incorporate it into our model for better application in
engineering practice.
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