353 research outputs found

    Protecting U.S. Intellectual Property Rights and the Challenges of Digital Piracy

    Get PDF
    According to U.S. industry and government officials, intellectual property rights (IPR) infringement has reached critical levels in the United States as well as abroad. The speed and ease with which the duplication of products protected by IPR can occur has created an urgent need for industries and governments alike to address the protection of IPR in order to keep markets open to trade in the affected goods. Copyrighted products such as software, movies, music and video recordings, and other media products have been particularly affected by inadequate IPR protection. New tools, such as writable compact discs (CDs) and, of course, the Internet have made duplication not only effortless and low-cost, but anonymous as well. This paper discusses the merits of IPR protection and its importance to the U.S. economy. It then provides background on various technical, legal, and trade policy methods that have been employed to control the infringement of IPR domestically and internationally. This is followed by an analysis of current and future challenges facing U.S. industry with regard to IPR protection, particularly the challenges presented by the Internet and digital piracy.Research and Development/Tech Change/Emerging Technologies,

    A multifaceted approach to understanding unexpected sound change: the bilabial trills of Vanuatu’s Malekula Island

    Get PDF
    This paper demonstrates that unexpected sound changes are best explained by an approach that accounts for different motivations: phonetic, structural and social. Here, we focus on a multifaceted investigation of the crosslinguistically uncommon bilabial trills to show the complex interaction between different drivers of sound change. In this paper, we highlight and examine the prenasalized voiced bilabial trill mʙ and plain voiceless bilabial trill P [ʙ̥] found in a number of Oceanic languages spoken on Malekula Island in Vanuatu. We offer a comparative-historical analysis, and we identify the various forces that have led to the emergence and persistence of mʙ and P in Malekula languages: the historical articulatory environments, the particular make-up of the consonant inventories of these languages, complementary sound changes and phonological processes, contact with non-Austronesian languages, and in-group identity attachment. Furthermore, we offer a hypothesis for the relative timing of these factors on the historical pathway of Malekula’s bilabial trills

    A cross-linguistic database of phonetic transcription systems

    Get PDF
    Contrary to what non-practitioners might expect, the systems of phonetic notation used by linguists are highly idiosyncratic. Not only do various linguistic subfields disagree on the specific symbols they use to denote the speech sounds of languages, but also in large databases of sound inventories considerable variation can be found. Inspired by recent efforts to link cross-linguistic data with help of reference catalogues (Glottolog, Concepticon) across different resources, we present initial efforts to link different phonetic notation systems to a catalogue of speech sounds. This is achieved with the help of a database accompanied by a software framework that uses a limited but easily extendable set of non-binary feature values to allow for quick and convenient registration of different transcription systems, while at the same time linking to additional datasets with restricted inventories. Linking different transcription systems enables us to conveniently translate between different phonetic transcription systems, while linking sounds to databases allows users quick access to various kinds of metadata, including feature values, statistics on phoneme inventories, and information on prosody and sound classes. In order to prove the feasibility of this enterprise, we supplement an initial version of our cross-linguistic database of phonetic transcription systems (CLTS), which currently registers five transcription systems and links to fifteen datasets, as well as a web application, which permits users to conveniently test the power of the automatic translation across transcription systems

    Reo Ra’ivavae (Ra’ivavae, Austral Archipelago, French-occupied Polynesia) - Language Snapshot

    Get PDF
    Reo Ra’ivavae is the autochthonous language of the people of Ra’ivavae, in the Austral Islands of French-occupied Polynesia. It is also spoken in the administrative centre of French-occupied Polynesia, Tahiti, by the Ra’ivavae diaspora. Historically, the language is considered an Eastern Polynesian language that exhibits some unique sound changes, not found elsewhere in the subgroup. The Ra’ivavae population is undergoing language shift to Tahitian and there exists some degree of multilingualism on the island with French as well. While the exact degree of endangerment is unclear, the language is under threat and urgently requires significant study as there is as of yet very little documentation or description of the language

    The evolution of trait correlations constrains phenotypic adaptation to high CO2 in a eukaryotic alga

    Full text link
    Microbes form the base of food webs and drive biogeochemical cycling. Predicting the effects of microbial evolution on global elemental cycles remains a significant challenge due to the sheer number of interacting environmental and trait combinations. Here, we present an approach for integrating multivariate trait data into a predictive model of trait evolution. We investigated the outcome of thousands of possible adaptive walks parameterized using empirical evolution data from the alga Chlamydomonas exposed to high CO2. We found that the direction of historical bias (existing trait correlations) influenced both the rate of adaptation and the evolved phenotypes (trait combinations). Critically, we use fitness landscapes derived directly from empirical trait values to capture known evolutionary phenomena. This work demonstrates that ecological models need to represent both changes in traits and changes in the correlation between traits in order to accurately capture phytoplankton evolution and predict future shifts in elemental cycling

    Microbial evolutionary strategies in a dynamic ocean

    Get PDF

    Sequence comparison in computational historical linguistics

    Get PDF
    With increasing amounts of digitally available data from all over the world, manual annotation of cognates in multi-lingual word lists becomes more and more time-consuming in historical linguistics. Using available software packages to pre-process the data prior to manual analysis can drastically speed-up the process of cognate detection. Furthermore, it allows us to get a quick overview on data which have not yet been intensively studied by experts. LingPy is a Python library which provides a large arsenal of routines for sequence comparison in historical linguistics. With LingPy, linguists can not only automatically search for cognates in lexical data, but they can also align the automatically identified words, and output them in various forms, which aim at facilitating manual inspection. In this tutorial, we will briefly introduce the basic concepts behind the algorithms employed by LingPy and then illustrate in concrete workflows how automatic sequence comparison can be applied to multi-lingual word lists. The goal is to provide the readers with all information they need to (1) carry out cognate detection and alignment analyses in LingPy, (2) select the appropriate algorithms for the appropriate task, (3) evaluate how well automatic cognate detection algorithms perform compared to experts, and (4) export their data into various formats useful for additional analyses or data sharing. While basic knowledge of the Python language is useful for all analyses, our tutorial is structured in such a way that scholars with basic knowledge of computing can follow through all steps as well

    Multivariate trait analysis reveals diatom plasticity constrained to a reduced set of biological axes

    Full text link
    AbstractTrait-based approaches to phytoplankton ecology have gained traction in recent decades as phenotypic traits are incorporated into ecological and biogeochemical models. Here, we use high-throughput phenotyping to explore both intra- and interspecific constraints on trait combinations that are expressed in the cosmopolitan marine diatom genus Thalassiosira. We demonstrate that within Thalassiosira, phenotypic diversity cannot be predicted from genotypic diversity, and moreover, plasticity can create highly divergent phenotypes that are incongruent with taxonomic grouping. Significantly, multivariate phenotypes can be represented in reduced dimensional space using principal component analysis with 77.7% of the variance captured by two orthogonal axes, here termed a ‘trait-scape’. Furthermore, this trait-scape can be recovered with a reduced set of traits. Plastic responses to the new environments expanded phenotypic trait values and the trait-scape, however, the overall pattern of response to the new environments was similar between strains and many trait correlations remained constant. These findings demonstrate that trait-scapes can be used to reveal common constraints on multi-trait plasticity in phytoplankton with divergent underlying phenotypes. Understanding how to integrate trait correlational constraints and trade-offs into theoretical frameworks like biogeochemical models will be critical to predict how microbial responses to environmental change will impact elemental cycling now and into the future.</jats:p

    Checkpoints are blind to replication restart and recombination intermediates that result in gross chromosomal rearrangements

    Get PDF
    Replication fork inactivation can be overcome by homologous recombination, but this can cause gross chromosomal rearrangements that subsequently missegregate at mitosis, driving further chromosome instability. It is unclear when the chromosome rearrangements are generated and whether individual replication problems or the resulting recombination intermediates delay the cell cycle. Here we have investigated checkpoint activation during HR-dependent replication restart using a site-specific replication fork-arrest system. Analysis during a single cell cycle shows that HR-dependent replication intermediates arise in S phase, shortly after replication arrest, and are resolved into acentric and dicentric chromosomes in G2. Despite this, cells progress into mitosis without delay. Neither the DNA damage nor the intra-S phase checkpoints are activated in the first cell cycle, demonstrating that these checkpoints are blind to replication and recombination intermediates as well as to rearranged chromosomes. The dicentrics form anaphase bridges that subsequently break, inducing checkpoint activation in the second cell cycle
    corecore