66,087 research outputs found
The case for a cold dark matter cusp in Draco
We use a new mass modelling method, GravSphere, to measure the central dark
matter density profile of the Draco dwarf spheroidal galaxy. Draco's star
formation shut down long ago, making it a prime candidate for hosting a
'pristine' dark matter cusp, unaffected by stellar feedback during galaxy
formation. We first test GravSphere on a suite of tidally stripped mock
'Draco'-like dwarfs. We show that we are able to correctly infer the dark
matter density profile of both cusped and cored mocks within our 95% confidence
intervals. While we obtain only a weak inference on the logarithmic slope of
these density profiles, we are able to obtain a robust inference of the
amplitude of the inner dark matter density at 150pc, . We show that, combined with constraints on the density profile at larger
radii, this is sufficient to distinguish a Cold Dark Matter
(CDM) cusp that has from alternative dark matter models
that have lower inner densities. We then apply GravSphere to the real Draco
data. We find that Draco has an inner dark matter density of , consistent with a CDM cusp. Using a velocity independent
SIDM model, calibrated on SIDM cosmological simulations, we show that
Draco's high central density gives an upper bound on the SIDM cross section of
at 99% confidence. We conclude that
the inner density of nearby dwarf galaxies like Draco provides a new and
competitive probe of dark matter models.Comment: 19 pages, 11 Figures. Final version accepted for publication in MNRA
Isolation and characterisation of Sri Lankan yeast germplasm and its evaluation for alcohol production
Use of inferior yeast cultures represents one of the reasons for low fermentation efficiencies in Sri Lankan alcohol distilleries that use sugarcane molasses. The present study isolated and characterised yeast strains found in natural environments in Sri Lanka and evaluated their performance under laboratory conditions in an effort to select superior strains for industrial fermentations. Yeasts were characterised based on morphological and physiological features such as sugar fermentation and nitrate assimilation. Ethanol production, alcohol tolerance and growth rate of the most promising strains were monitored following laboratory fermentations of molasses. Over a thousand yeast cultures were collected and screened for fermentative activity and a total of 83 yeast isolates were characterised as higher ethanol producers. Most of these belonged to the genus Saccharomyces. Certain strains produced over 10% (v/v) alcohol in molasses media during 72 h laboratory fermentations. Only two strains, SL-SRI-C-102 and 111, showed an appreciable fermentation efficiency of about 90%. The latter strain produced the highest level of ethanol, 11% (v/v) within a 48 h fermentation and exhibited improved alcohol tolerance when compared with the baker's yeast strains currently used in Sri Lankan alcohol distilleries. This study highlights the benefits of exploiting indigenous yeasts for industrial fermentation processes
Dark matter heats up in dwarf galaxies
Gravitational potential fluctuations driven by bursty star formation can
kinematically 'heat up' dark matter at the centres of dwarf galaxies. A key
prediction of such models is that, at a fixed dark matter halo mass, dwarfs
with a higher stellar mass will have a lower central dark matter density. We
use stellar kinematics and HI gas rotation curves to infer the inner dark
matter densities of eight dwarf spheroidal and eight dwarf irregular galaxies
with a wide range of star formation histories. For all galaxies, we estimate
the dark matter density at a common radius of 150pc, . We find that our sample of dwarfs falls into two
distinct classes. Those that stopped forming stars over 6Gyrs ago favour
central densities , consistent with cold dark matter cusps, while those with more
extended star formation favour , consistent with shallower dark matter cores. Using
abundance matching to infer pre-infall halo masses, , we show that
this dichotomy is in excellent agreement with models in which dark matter is
heated up by bursty star formation. In particular, we find that steadily decreases with increasing stellar mass-to-halo
mass ratio, . Our results suggest that, to leading order, dark
matter is a cold, collisionless, fluid that can be kinematically 'heated up'
and moved around.Comment: 22 pages, 10 Figures. Final version accepted for publication in MNRA
A Completely Invariant SUSY Transform of Supersymmetric QED
We study the SUSY breaking of the covariant gauge-fixing term in SUSY QED and
observe that this corresponds to a breaking of the Lorentz gauge condition by
SUSY. Reasoning by analogy with SUSY's violation of the Wess-Zumino gauge, we
argue that the SUSY transformation, already modified to preserve Wess-Zumino
gauge, should be further modified by another gauge transformation which
restores the Lorentz gauge condition. We derive this modification and use the
resulting transformation to derive a Ward identitiy relating the photon and
photino propagators without using ghost fields. Our transformation also
fulfills the SUSY algebra, modulo terms that vanish in Lorentz gauge
Understanding the different rotational behaviors of No and No
Total Routhian surface calculations have been performed to investigate
rapidly rotating transfermium nuclei, the heaviest nuclei accessible by
detailed spectroscopy experiments. The observed fast alignment in No
and slow alignment in No are well reproduced by the calculations
incorporating high-order deformations. The different rotational behaviors of
No and No can be understood for the first time in terms of
deformation that decreases the energies of the
intruder orbitals below the N=152 gap. Our investigations reveal the importance
of high-order deformation in describing not only the multi-quasiparticle states
but also the rotational spectra, both providing probes of the single-particle
structure concerning the expected doubly-magic superheavy nuclei.Comment: 5 pages, 4 figures, the version accepted for publication in Phys.
Rev.
Dynamic absorption of carbon dioxide on microporous carbons
Adsorption of carbon dioxide on microporous carbon
- …