530 research outputs found

    Weak Gravitational Lensing by Voids

    Get PDF
    We consider the prospects for detecting weak gravitational lensing by underdensities (voids) in the large-scale matter distribution. We derive the basic expressions for magnification and distortion by spherical voids. Clustering of the background sources and cosmic variance are the main factors which limit in principle the detection of lensing by voids. We conclude that only voids with radii larger than ∌100\sim 100 \hm have lensing signal to noise larger than unity.Comment: 12 pages, 7 figures, uses mn-1_4.sty file, submitted to MNRA

    Phase Transition in Sexual Reproduction and Biological Evolution

    Full text link
    Using Monte Carlo model of biological evolution we have discovered that populations can switch between two different strategies of their genomes' evolution; Darwinian purifying selection and complementing the haplotypes. The first one is exploited in the large panmictic populations while the second one in the small highly inbred populations. The choice depends on the crossover frequency. There is a power law relation between the critical value of crossover frequency and the size of panmictic population. Under the constant inbreeding this critical value of crossover does not depend on the population size and has a character of phase transition. Close to this value sympatric speciation is observed.Comment: 13 pages, 8 figure

    Dark Energy and the Statistical Study of the Observed Image Separations of the Multiply Imaged Systems in the CLASS Statistical Sample

    Full text link
    The present day observations favour a universe which is flat, accelerated and composed of ∌1/3\sim 1/3 matter (baryonic + dark) and ∌2/3\sim 2/3 of a negative pressure component, usually referred to as dark energy or quintessence. The Cosmic Lens All Sky Survey (CLASS), the largest radio-selected galactic mass scale gravitational lens search project to date, has resulted in the largest sample suitable for statistical analyses. In the work presented here, we exploit observed image separations of the multiply imaged lensed radio sources in the sample. We use two different tests: (1) image separation distribution function n(Δξ)n(\Delta\theta) of the lensed radio sources and (2) {\dtheta}_{\mathrm{pred}} vs {\dtheta}_{\mathrm{obs}} as observational tools to constrain the cosmological parameters ww and \Om. The results are in concordance with the bounds imposed by other cosmological tests.Comment: 20 pages latex; Modified " Results and Discussion " section, new references adde

    Selection of DNA aptamers that bind to influenza A viruses with high affinity and broad subtype specificity

    Get PDF
    AbstractMany cases of influenza are reported worldwide every year. The influenza virus often acquires new antigenicity, which is known as antigenic shift; this results in the emergence of new virus strains, for which preexisting immunity is not found in the population resulting in influenza pandemics. In the event a new strain emerges, diagnostic tools must be developed rapidly to detect the novel influenza strain. The generation of high affinity antibodies is costly and takes time; therefore, an alternative detection system, aptamer detection, provides a viable alternative to antibodies as a diagnostic tool. In this study, we developed DNA aptamers that bind to HA1 proteins of multiple influenza A virus subtypes by the SELEX procedure. To evaluate the binding properties of these aptamers using colorimetric methods, we developed a novel aptamer-based sandwich detection method employing our newly identified aptamers. This novel sandwich enzyme-linked aptamer assay successfully detected the H5N1, H1N1, and H3N2 subtypes of influenza A virus with almost equal sensitivities. These findings suggest that our aptamers are attractive candidates for use as simple and sensitive diagnostic tools that need sandwich system for detecting the influenza A virus with broad subtype specificities

    Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein

    Get PDF
    p21 inhibits cyclin-dependent kinase (CDK) activity and proliferating cell nuclear antigen (PCNA)-dependent DNA replication by binding to CDK/cyclin complexes and to PCNA through distinct domains. The human papillomavirus (HPV)-16 E7 oncoprotein (16E7) abrogated a DNA damage-induced cell cycle arrest in vivo, despite high levels of p21. Using cell lysates and purified proteins we show that 16E7 prevented p21 both from inhibiting CDK2/cyclin E activity and PCNA-dependent DNA replication, whereas the nononcogenic HPV-6 E7 had reduced effects. Inactivation of both inhibitory functions of p21 was attained through binding between 16E7 and sequences in the carboxy-terminal end of p21 that overlap with the PCNA-binding site and the second p21 cyclin-binding motif. These data imply that the carboxyl terminus of p21 simultaneously modulates both CDK activity and PCNA-dependent DNA replication and that a single protein, 16E7, can override this modulation to disrupt normal cell cycle control

    An analysis of cosmological perturbations in hydrodynamical and field representations

    Get PDF
    Density fluctuations of fluids with negative pressure exhibit decreasing time behaviour in the long wavelength limit, but are strongly unstable in the small wavelength limit when a hydrodynamical approach is used. On the other hand, the corresponding gravitational waves are well behaved. We verify that the instabilities present in density fluctuations are due essentially to the hydrodynamical representation; if we turn to a field representation that lead to the same background behaviour, the instabilities are no more present. In the long wavelength limit, both approachs give the same results. We show also that this inequivalence between background and perturbative level is a feature of negative pressure fluid. When the fluid has positive pressure, the hydrodynamical representation leads to the same behaviour as the field representation both at the background and perturbative levels.Comment: Latex file, 18 page

    Inhomogeneous Universe Models with Varying Cosmological Term

    Get PDF
    The evolution of a class of inhomogeneous spherically symmetric universe models possessing a varying cosmological term and a material fluid, with an adiabatic index either constant or not, is studied.Comment: 11 pages Latex. No figures. To be published in the GRG Journa

    The late Vistulian and Holocene evolution of Jezioro Lake : a record of environmental change in southern Poland found in deposits and landforms

    Get PDF
    Jezioro Lake is the only natural lake in southern Poland outside mountainous areas to have existed continuously since the Pleistocene. The record of environmental change in the Late Vistulian (Weichselian) and Holocene is preserved in the deposits and landforms around the lake. This paper presents the results of paleogeographical and paleoecological research that emabled us to reconstruct the history of the Jezioro Lake. At the end of the Vistulian period, the outlet of the lake was blocked by a parabolic dune moving in from the west. Limnic sedimentation was evident in the sediment core at all levels from the Holocene, with remains of Cladocera, Chironomidae larvae, and aquatic plants. The lake did not disappear at that time, although its area decreased by a factor of 12 by the end of the period. Paleobotanical research permitted the reconstruction of sequences of plant communities and changes in nutrient status and water level. An initial oligotrophic lake, as indicated by the presence of Isoeštes lacustris L., changed to a eutrophic lake, as indicated by the presence of Potamogeton natans L. and Nuphar sp., then the lake progressed to the present-day dystrophic lake that is surrounded by a swamp. The profile of organic deposits contains a record of environmental change at least since the Younger Dryas in southern Poland
    • 

    corecore