14,893 research outputs found

    Nuclear Bar, Star Formation and Gas Fueling in the Active Galaxy NGC 4303

    Full text link
    A combination of Hubble Space Telescope (HST) WFPC2 and NICMOS images are used to investigate the gas/dust and stellar structure inside the central 300 pc of the nearby active galaxy NGC 4303. The NICMOS H-band (F160W) image reveals a bright core and a nuclear elongated bar-like structure of 250 pc in diameter. The bar is centered on the bright core, and its major axis is oriented in proyection along the spin axis of the nuclear gaseous rotating disk recently detected (Colina & Arribas 1999). The V-H (F606W - F160W) image reveals a complex gas/dust distribution with a two-arm spiral structure of about 225 pc in radius. The southwestern arm is traced by young star-forming knots while the northeastern arm is detected by the presence of dust lanes. These spirals do not have a smooth structure but rather they are made of smaller flocculent spirals or filament-like structures. The magnitudes and colors of the star-forming knots are typical of clusters of young stars with masses of 0.5 to 1 x 105Msolar,andagesof5to25millionyears.Theoverallstructureofthenuclearspiralsaswellasthesize,numberandmassesofthestar−formingknotsareexplainedinthecontextofamassivegaseousnucleardisksubjecttoself−gravitationalinstabilitiesandtothegravitationalfieldcreatedbythenuclearbar.Accordingtothemodel,thegaseousdiskhasamassofabout5x107Msolarinsidearadiusof400pc,thebarhasaradiusof150pcandapatternspeedofabout0.5Myr−1,andtheaveragemassaccretionrateintothecore(R<8pc)isabout0.01Msolar10^5 M_{solar}, and ages of 5 to 25 million years. The overall structure of the nuclear spirals as well as the size, number and masses of the star-forming knots are explained in the context of a massive gaseous nuclear disk subject to self-gravitational instabilities and to the gravitational field created by the nuclear bar. According to the model, the gaseous disk has a mass of about 5 x 10^7 M_{solar} inside a radius of 400 pc, the bar has a radius of 150 pc and a pattern speed of about 0.5 Myr^{-1}, and the average mass accretion rate into the core (R < 8 pc) is about 0.01 M_{solar} yr^{-1} for about 80 Myr.Comment: ApJ, in press (February 1, 2000

    Multi-Phase Gas Dynamics in a Weak Barred Potential

    Get PDF
    The structure of the interstellar medium in the central kpc region of a galaxy with a weak bar-like potential is investigated taking into account realistic cooling and heating processes and the self-gravity of the gas. Using high resolution hydrodynamical simulations, it is revealed that the resonant structures (e.g. smooth spiral shocks and a nuclear ring) are very different from those seen in past numerical models where simple models of the ISM, i.e. non-self-gravitating, isothermal gas were assumed. We find that the pc-scale filaments and clumps form large scale spirals, which resemble those seen in real galaxies. The fine structures are different between the arms and in the nuclear region. The next generation millimeter interferometer (ALMA) may reveal the fine structures of the cold gas in nearby galaxies. We also find a large scale anisotropy in the gas temperature, which is caused due to non-circular velocity field of the gas.The damped orbit model based on the epicyclic approximation explains the distribution of the hot (> 10^4 K) and cold (< 100 K) gases appearing alternately around the galactic center. Because of the temperature anisotropy, cold gases observed by molecular lines do not necessarily represent the real gas distribution in galaxies. Position-Velocity diagrams depend strongly on the viewing angles. As a result, the rotational velocity inferred from the PV maps could be two times larger or smaller than the true circular velocity.Comment: 7 pages, 8 figures, to appear in PASJ, vol. 56, no.6 (2001

    Ground test of large flexible structures

    Get PDF
    Many future mission models require large space (LSS) which have accurate surfaces and/or the capability of being accurately aligned. If ground test approaches which will provide adequate confidence of the structrual performance to the program managers are not developed, many viable structural concepts may never be utilized. The size and flexibility of many of the structural concepts will preclude the use of the current ground test methods because of the adverse effects of the terrestrial environment. The challenge is to develop new test approaches which will provide confidence in the capability of LSS to meet performance requirements prior to flight. The activities on ground testing of LSS are described. Since some of the proposed structural systems cannot be tested in entirety, a coordinated ground test analytical model program is required to predict structural performance in space. Several concepts of ground testing under development are addressed

    Dynamical Susceptibility in KH2PO4-type Crystals above and below Tc

    Full text link
    The time dependent cluster approximation called the path probability method (PPM) is applied to a pseudo-spin Ising Hamiltonian of the Slater-Takagi model for KH2PO4-type hydrogen-bonded ferroelectrics in order to calculate the homogeneous dynamical susceptibility above and below the ferroelectric transition temperature. Above the transition temperature all the calculations are carried out analytically in the cactus approximation of the PPM. Below the transition temperature the dynamical susceptibility is also calculated accurately since the analytical solution of spontaneous polarization in the ferroelectric phase can be utilized. When the temperature is approached from both sides of the transition temperature, only one of relaxation times shows a critical slowing down and makes a main contribution to the dynamical susceptibility. The discrepancy from Slater model (ice-rule limit) is discussed in comparison with some experimental data.Comment: 8 pages, 10 figure

    Altitude variations of cosmic-ray soft and hard components observed by airborne detectors

    Get PDF
    The altitude variations of cosmic-ray total and hard components were measured up to 12,000 m on board a jet liner over Japan island on December, 1981. Observed results together with soft component are presented comparing with the model calculations through the atmosphere by applying the hadronic cascade

    Diurnal variations from muon data at Takeyama underground station

    Get PDF
    An underground station, Takeyama, is introduced, and some results of the solar diurnal and semi-diurnal variations for the period between 1967 and 1984 are presented. There are clear tendencies of double and single solar cycle variations in the daily variations which are in good accord with those detected by other underground and neutron monitor observations

    Effects of a Supermassive Black Hole Binary on a Nuclear Gas Disk

    Full text link
    We study influence of a galactic central supermassive black hole (SMBH) binary on gas dynamics and star formation activity in a nuclear gas disk by making three-dimensional Tree+SPH simulations. Due to orbital motions of SMBHs, there are various resonances between gas motion and the SMBH binary motion. We have shown that these resonances create some characteristic structures of gas in the nuclear gas disk, for examples, gas elongated or filament structures, formation of gaseous spiral arms, and small gas disks around SMBHs. In these gaseous dense regions, active star formations are induced. As the result, many star burst regions are formed in the nuclear region.Comment: 19 pages, 11 figures, accepted for publication in Ap

    Time-resolved infrared emission from radiation-driven central obscuring structures in Active Galactic Nuclei

    Full text link
    The central engines of Seyfert galaxies are thought to be enshrouded by geometrically thick gas and dust structures. In this article, we derive observable properties for a self-consistent model of such toroidal gas and dust distributions, where the geometrical thickness is achieved and maintained with the help of X-ray heating and radiation pressure due to the central engine. Spectral energy distributions (SEDs) and images are obtained with the help of dust continuum radiative transfer calculations with RADMC-3D. For the first time, we are able to present time-resolved SEDs and images for a physical model of the central obscurer. Temporal changes are mostly visible at shorter wavelengths, close to the combined peak of the dust opacity as well as the central source spectrum and are caused by variations in the column densities of the generated outflow. Due to the three-component morphology of the hydrodynamical models -- a thin disc with high density filaments, a surrounding fluffy component (the obscurer) and a low density outflow along the rotation axis -- we find dramatic differences depending on wavelength: whereas the mid-infrared images are dominated by the elongated appearance of the outflow cone, the long wavelength emission is mainly given by the cold and dense disc component. Overall, we find good agreement with observed characteristics, especially for those models, which show clear outflow cones in combination with a geometrically thick distribution of gas and dust, as well as a geometrically thin, but high column density disc in the equatorial plane.Comment: 16 pages, 12 figures, accepted for publication in MNRA
    • …
    corecore