20 research outputs found

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    Interventions designed to improve the quality and efficiency of medication use in managed care: A critical review of the literature – 2001–2007

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Managed care organizations use a variety of strategies to reduce the cost and improve the quality of medication use. The effectiveness of such policies is not well understood. The objective of this research was to update a previous systematic review of interventions, published between 1966 and 2001, to improve the quality and efficiency of medication use in the US managed care setting.</p> <p>Methods</p> <p>We searched MEDLINE and EMBASE for publications from July 2001 to January 2007 describing interventions targeting drug use conducted in the US managed care setting. We categorized studies by intervention type and adequacy of research design using commonly accepted criteria. We summarized the outcomes of well-controlled strategies and documented the significance and magnitude of effects for key study outcomes.</p> <p>Results</p> <p>We identified 164 papers published during the six-year period. Predominant strategies were: educational interventions (n = 20, including dissemination of educational materials, and group or one-to-one educational outreach); monitoring and feedback (n = 22, including audit/feedback and computerized monitoring); formulary interventions (n = 66, including tiered formulary and patient copayment); collaborative care involving pharmacists (n = 15); and disease management with pharmacotherapy as a primary focus (n = 41, including care for depression, asthma, and peptic ulcer disease). Overall, 51 studies met minimum criteria for methodological adequacy. Effective interventions included one-to-one academic detailing, computerized alerts and reminders, pharmacist-led collaborative care, and multifaceted disease management. Further, changes in formulary tier-design and related increases in copayments were associated with reductions in medication use and increased out-of-pocket spending by patients. The dissemination of educational materials alone had little or no impact, while the impact of group education was inconclusive.</p> <p>Conclusion</p> <p>There is good evidence for the effectiveness of several strategies in changing drug use in the managed care environment. However, little is known about the cost-effectiveness of these interventions. Computerized alerts showed promise in improving short-term outcomes but little is known about longer-term outcomes. Few well-designed, published studies have assessed the potential negative clinical effects of formulary-related interventions despite their widespread use. However, some evidence suggests increases in cost sharing reduce access to essential medicines for chronic illness.</p

    Instantaneous and time-averaged flow fields of multiple vortices in the tip region of a ducted propulsor

    Full text link
    The instantaneous and time-averaged flow fields in the tip region of a ducted marine propulsor are examined. In this flow, a primary tip-leakage vortex interacts with a secondary, co-rotating trailing edge vortex and other co- and counter-rotating vorticity found in the blade wake. Planar particle imaging velocimetry (PIV) is used to examine the flow in a plane approximately perpendicular to the mean axis of the primary vortex. An identification procedure is used to characterize multiple regions of compact vorticity in the flow fields as series of Gaussian vortices. Significant differences are found between the vortex properties from the time-averaged flow fields and the average vortex properties identified in the instantaneous flow fields. Variability in the vortical flow field results from spatial wandering of the vortices, correlated fluctuations of the vortex strength and core size, and both correlated and uncorrelated fluctuations in the relative positions of the vortices. This variability leads to pseudo-turbulent velocity fluctuations. Corrections for some of this variability are performed on the instantaneous flow fields. The resulting processed flow fields reveal a significant increase in flow variability in a region relatively far downstream of the blade trailing edge, a phenomenon that is masked through the process of simple averaging. This increased flow variability is also accompanied by the inception of discrete vortex cavitation bubbles, which is an unexpected result, since the mean flow pressures in the region of inception are much higher than the vapor pressure of the liquid. This suggests that unresolved fine-scale vortex interactions and stretching may be occurring in the region of increased flow variability.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47076/1/348_2005_Article_938.pd

    New Strategies in Modeling Electronic Structures and Properties with Applications to Actinides

    Full text link
    This chapter discusses contemporary quantum chemical methods and provides general insights into modern electronic structure theory with a focus on heavy-element-containing compounds. We first give a short overview of relativistic Hamiltonians that are frequently applied to account for relativistic effects. Then, we scrutinize various quantum chemistry methods that approximate the NN-electron wave function. In this respect, we will review the most popular single- and multi-reference approaches that have been developed to model the multi-reference nature of heavy element compounds and their ground- and excited-state electronic structures. Specifically, we introduce various flavors of post-Hartree--Fock methods and optimization schemes like the complete active space self-consistent field method, the configuration interaction approach, the Fock-space coupled cluster model, the pair-coupled cluster doubles ansatz, also known as the antisymmetric product of 1 reference orbital geminal, and the density matrix renormalization group algorithm. Furthermore, we will illustrate how concepts of quantum information theory provide us with a qualitative understanding of complex electronic structures using the picture of interacting orbitals. While modern quantum chemistry facilitates a quantitative description of atoms and molecules as well as their properties, concepts of quantum information theory offer new strategies for a qualitative interpretation that can shed new light onto the chemistry of complex molecular compounds.Comment: 43 pages, 3 figures, Version of Recor

    Rebound Discharge in Deep Cerebellar Nuclear Neurons In Vitro

    Get PDF
    Neurons of the deep cerebellar nuclei (DCN) play a critical role in defining the output of cerebellum in the course of encoding Purkinje cell inhibitory inputs. The earliest work performed with in vitro preparations established that DCN cells have the capacity to translate membrane hyperpolarizations into a rebound increase in firing frequency. The primary means of distinguishing between DCN neurons has been according to cell size and transmitter phenotype, but in some cases, differences in the firing properties of DCN cells maintained in vitro have been reported. In particular, it was shown that large diameter cells in the rat DCN exhibit two phenotypes of rebound discharge in vitro that may eventually help define their functional roles in cerebellar output. A transient burst and weak burst phenotype can be distinguished based on the frequency and pattern of rebound discharge immediately following a hyperpolarizing stimulus. Work to date indicates that the difference in excitability arises from at least the degree of activation of T-type Ca2+ current during the immediate phase of rebound firing and Ca2+-dependent K+ channels that underlie afterhyperpolarizations. Both phenotypes can be detected following stimulation of Purkinje cell inhibitory inputs under conditions that preserve resting membrane potential and natural ionic gradients. In this paper, we review the evidence supporting the existence of different rebound phenotypes in DCN cells and the ion channel expression patterns that underlie their generation

    Interaction Between Convection and Pulsation

    Get PDF

    Generic medicines and biosimilars: Impact on global pharmaceutical policy

    No full text
    Patient access to safe and cost-effective treatment is an important goal for the healthcare system. The development of biosimilar compounds and generic medicines is interesting to the industry and society to reduce healthcare costs, fulfill the needs of healthcare stakeholders and potentially increase accessibility to patients. Patient and physician acceptance, with many patients preferring biologics and branded products and physicians prescribing the same, limits the use of generic medicine and biosimilars. The growth of these products in part depends on various stakeholders' decisions to provide, pay for or use these products in a safe and thoughtful manner. Ongoing stakeholder collaboration, educational activities and review of current government and payer policies are required to optimize the uptake of generic medicines and biosimilars.Scopu
    corecore