33 research outputs found

    High Levels of Sediment Contamination Have Little Influence on Estuarine Beach Fish Communities

    Get PDF
    While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination

    Small molecules, big targets: drug discovery faces the protein-protein interaction challenge.

    Get PDF
    Protein-protein interactions (PPIs) are of pivotal importance in the regulation of biological systems and are consequently implicated in the development of disease states. Recent work has begun to show that, with the right tools, certain classes of PPI can yield to the efforts of medicinal chemists to develop inhibitors, and the first PPI inhibitors have reached clinical development. In this Review, we describe the research leading to these breakthroughs and highlight the existence of groups of structurally related PPIs within the PPI target class. For each of these groups, we use examples of successful discovery efforts to illustrate the research strategies that have proved most useful.JS, DES and ARB thank the Wellcome Trust for funding.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nrd.2016.2

    First Results of the Viers-1 Experiment

    No full text
    In February 1988, cornbined measurements of microwave backscatler, wind, waves and gas exchange have been carried out in the large Delft lHydraulics wind/rwave tank. This experiment was the first in a series of experimeuts in the frame of the VIERS-1 project. In this project a number of Dutch and German laborabories cooperate. Main objective is to come to a physical descriplion of the processes involved in wind scatterometry and, from that point, to an improvement of the algorithms used for determination of wind speed and direction from satellite borne microwave scatterometers. A second objective is to study the relation between the gas exchange at the water surface and the microwave backscatter. To achieve these objectives two wind/wave tank experiments and one ocean based platform experiment are scheduled. In this paper, the VIERS-1 programme will be outlined. The Delft wind/wave tank experiment will be described and some first results of a preliminary comparison of backscatter and wave slope measurements will be shown

    The effect of a glyphosate-based herbicide on acetylcholinesterase (AChE) activity, oxidative stress, and antioxidant status in freshwater amphipod: Gammarus pulex (Crustacean)

    No full text
    This study had determined the effect of glyphosate-based herbicide (GBH) on acetylcholinesterase (AChE) enzyme activity, oxidative stress, and antioxidant status in Gammarus pulex. Firstly, the 96-h LC50 value of glyphosate on G. pulex was determined and calculated as 403 μg/L. Subsequently, the organisms were exposed to sub-lethal concentrations (10, 20, and 40 μg/L) of the determined GHB for 24 and 96 h. The samples were taken from control and GBH-treated groups at 24 and 96 h of study and analysed to determine the malondialdehyde (MDA) and reduced glutathione (GSH) levels, the AChE, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) enzyme activities. In the G. pulex exposed to GBH for 24 and 96 h, the MDA level increased significantly (p < 0.05). The GSH level, the AChE, the CAT, and the GPx activities decreased compared with the control group (p < 0.05). G. pulex exposure to GBH for 24 h showed a temporary reduction in the SOD. GBH exposure led to oxidative stress in the G. pulex as well as affected the cholinergic system of the organism. These results indicated that the parameters measured may be important indicators of herbicide contamination in G. pulex
    corecore