102 research outputs found

    High Levels of Sediment Contamination Have Little Influence on Estuarine Beach Fish Communities

    Get PDF
    While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination

    Transverse Λ0\Lambda^0 polarization in inclusive quasi-real photoproduction: quark scattering model

    Full text link
    The transverse polarization of Λ0\Lambda^0 hyperons produced in the inclusive epep reaction at the 27.6 GeV beam energy is assumed to appear mostly via scattering of the strange quark in a color field. Results of application of such an idea to the preliminary data of HERMES are presented. Contributions of Σ0\Sigma^0, Ξ\Xi, and Σ\Sigma^* resonances to the polarization are taken into account.Comment: 5 pages, 5 figures, corrected according to version accepted by Physics of Atomic Nucle

    Enhancing authenticity, diagnosticity and equivalence (AD-Equiv) in multicentre OSCE exams in health professionals education: protocol for a complex intervention study

    Get PDF
    Introduction: Objective structured clinical exams (OSCEs) are a cornerstone of assessing the competence of trainee healthcare professionals, but have been criticised for (1) lacking authenticity, (2) variability in examiners’ judgements which can challenge assessment equivalence and (3) for limited diagnosticity of trainees’ focal strengths and weaknesses. In response, this study aims to investigate whether (1) sharing integrated-task OSCE stations across institutions can increase perceived authenticity, while (2) enhancing assessment equivalence by enabling comparison of the standard of examiners’ judgements between institutions using a novel methodology (video-based score comparison and adjustment (VESCA)) and (3) exploring the potential to develop more diagnostic signals from data on students’ performances. Methods and analysis: The study will use a complex intervention design, developing, implementing and sharing an integrated-task (research) OSCE across four UK medical schools. It will use VESCA to compare examiner scoring differences between groups of examiners and different sites, while studying how, why and for whom the shared OSCE and VESCA operate across participating schools. Quantitative analysis will use Many Facet Rasch Modelling to compare the influence of different examiners groups and sites on students’ scores, while the operation of the two interventions (shared integrated task OSCEs; VESCA) will be studied through the theory-driven method of Realist evaluation. Further exploratory analyses will examine diagnostic performance signals within data. Ethics and dissemination: The study will be extra to usual course requirements and all participation will be voluntary. We will uphold principles of informed consent, the right to withdraw, confidentiality with pseudonymity and strict data security. The study has received ethical approval from Keele University Research Ethics Committee. Findings will be academically published and will contribute to good practice guidance on (1) the use of VESCA and (2) sharing and use of integrated-task OSCE stations

    Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy

    Full text link
    Next-generation radio surveys are about to transform radio astronomy by discovering and studying tens of millions of previously unknown radio sources. These surveys will provide new insights to understand the evolution of galaxies, measuring the evolution of the cosmic star formation rate, and rivalling traditional techniques in the measurement of fundamental cosmological parameters. By observing a new volume of observational parameter space, they are also likely to discover unexpected new phenomena. This review traces the evolution of extragalactic radio continuum surveys from the earliest days of radio astronomy to the present, and identifies the challenges that must be overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201

    Early Onset Prion Disease from Octarepeat Expansion Correlates with Copper Binding Properties

    Get PDF
    Insertional mutations leading to expansion of the octarepeat domain of the prion protein (PrP) are directly linked to prion disease. While normal PrP has four PHGGGWGQ octapeptide segments in its flexible N-terminal domain, expanded forms may have up to nine additional octapeptide inserts. The type of prion disease segregates with the degree of expansion. With up to four extra octarepeats, the average onset age is above 60 years, whereas five to nine extra octarepeats results in an average onset age between 30 and 40 years, a difference of almost three decades. In wild-type PrP, the octarepeat domain takes up copper (Cu2+) and is considered essential for in vivo function. Work from our lab demonstrates that the copper coordination mode depends on the precise ratio of Cu2+ to protein. At low Cu2+ levels, coordination involves histidine side chains from adjacent octarepeats, whereas at high levels each repeat takes up a single copper ion through interactions with the histidine side chain and neighboring backbone amides. Here we use both octarepeat constructs and recombinant PrP to examine how copper coordination modes are influenced by octarepeat expansion. We find that there is little change in affinity or coordination mode populations for octarepeat domains with up to seven segments (three inserts). However, domains with eight or nine total repeats (four or five inserts) become energetically arrested in the multi-histidine coordination mode, as dictated by higher copper uptake capacity and also by increased binding affinity. We next pooled all published cases of human prion disease resulting from octarepeat expansion and find remarkable agreement between the sudden length-dependent change in copper coordination and onset age. Together, these findings suggest that either loss of PrP copper-dependent function or loss of copper-mediated protection against PrP polymerization makes a significant contribution to early onset prion disease

    Precision measurement of the speed of propagation of neutrinos using the MINOS detectors

    Get PDF
    We report a two-detector measurement of the propagation speed of neutrinos over a baseline of 734 km. The measurement was made with the NuMI beam at Fermilab between the near and far MINOS detectors. The fractional difference between the neutrino speed and the speed of light is determined to be (v/c−1)=(1.0±1.1)×10−6, consistent with relativistic neutrinos

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore