10 research outputs found

    Pyrrolidine dithiocarbamate administered during ex-vivo lung perfusion promotes rehabilitation of injured donor rat lungs obtained after prolonged warm ischemia.

    Get PDF
    Damaged lung grafts obtained after circulatory death (DCD lungs) and warm ischemia may be at high risk of reperfusion injury after transplantation. Such lungs could be pharmacologically reconditioned using ex-vivo lung perfusion (EVLP). Since acute inflammation related to the activation of nuclear factor kappaB (NF-κB) is instrumental in lung reperfusion injury, we hypothesized that DCD lungs might be treated during EVLP by pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB. Rat lungs exposed to 1h warm ischemia and 2 h cold ischemia were subjected to EVLP during 4h, in absence (CTRL group, N = 6) or in presence of PDTC (2.5g/L, PDTC group, N = 6). Static pulmonary compliance (SPC), peak airway pressure (PAWP), pulmonary vascular resistance (PVR), and oxygenation capacity were determined during EVLP. After EVLP, we measured the weight gain of the heart-lung block (edema), and the concentration of LDH (cell damage), proteins (permeability edema) and of the cytokines IL-6, TNF-α and CINC-1 in bronchoalveolar lavage (BAL), and we evaluated NF-κB activation by the degree of phosphorylation and degradation of its inhibitor IκBα in lung tissue. In CTRL, we found significant NF-κB activation, lung edema, and a massive release of LDH, proteins and cytokines. SPC significantly decreased, PAWP and PVR increased, while oxygenation tended to decrease. Treatment with PDTC during EVLP inhibited NF-κB activation, did not influence LDH release, but markedly reduced lung edema and protein concentration in BAL, suppressed TNFα and IL-6 release, and abrogated the changes in SPC, PAWP and PVR, with unchanged oxygenation. In conclusion, suppression of innate immune activation during EVLP using the NF-κB inhibitor PDTC promotes significant improvement of damaged rat DCD lungs. Future studies will determine if such rehabilitated lungs are suitable for in vivo transplantation

    IL-17A mediates early post-transplant lesions after heterotopic trachea allotransplantation in Mice.

    Get PDF
    Primary graft dysfunction (PGD) and bronchiolitis obliterans (BO) are the leading causes of morbidity and mortality after lung transplantation. Reports from clinical and rodent models suggest the implication of IL-17A in either PGD or BO. We took advantage of the heterotopic trachea transplantation model in mice to study the direct role of IL-17A in post-transplant airway lesions. Across full MHC barrier, early lesions were controlled in IL-17A(-/-) or anti-IL17 treated recipients. In contrast, IL-17A deficiency did not prevent subsequent obliterative airway disease (OAD). Interestingly, this early protection occurred also in syngeneic grafts and was accompanied by a decrease in cellular stress, as attested by lower HSP70 mRNA levels, suggesting the involvement of IL-17A in ischemia-reperfusion injury (IRI). Furthermore, persistence of multipotent CK14(+) epithelial stem cells underlined allograft protection afforded by IL-17A deficiency or neutralisation. Recipient-derived γδ(+) and CD4(+) T cells were the major source of IL-17A. However, lesions still occurred in the absence of each subset, suggesting a high redundancy between the innate and adaptive IL-17A producing cells. Notably, a double depletion significantly diminished lesions. In conclusion, this work implicated IL-17A as mediator of early post-transplant airway lesions and could be considered as a potential therapeutic target in clinical transplantation.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Year in review in Intensive Care Medicine 2012: I. Neurology and neurointensive care, epidemiology and nephrology, biomarkers and inflammation, nutrition, experimentals

    Get PDF
    Non

    The Family Streptomycetaceae

    No full text
    The family Streptomycetaceae comprises the genera Streptomyces, Kitasatospora, and Streptacidiphilus that are very difficult to differentiate both with genotypic and phenotypic characteristics. A separate generic status for Kitasatospora and Streptacidiphilus is questionable. Members of the family can be characterized as non-acid-alcohol-fast actinomycetes that generate most often an extensively branched substrate mycelium that rarely fragments. At maturity, the aerial mycelium forms chains of few to many spores. A large variety of pigments is produced, responsible for the color of the substrate and aerial mycelium. The organisms are chemoorganotrophic with an oxidative type of metabolism and grow within different pH ranges. Streptomyces are notable for their complex developmental cycle and production of bioactive secondary metabolites, producing more than a third of commercially available antibiotics. Antibacterial, antifungal, antiparasitic, and immunosuppressant compounds have been identified as products of Streptomyces secondary metabolism. Streptomyces can be distinguished from other filamentous actinomycetes on the basis of morphological characteristics, in particular by vegetative mycelium, aerial mycelium, and arthrospores. The genus comprises at the time of writing more than 600 species with validated names. 16S rRNA gene sequence-based analysis for species delineation within the Streptomycetaceae is of limited value. The variations within the 16S rRNA genes—even in the variable regions—are too small to resolve problems of species differentiation and to establish a taxonomic structure within the genus. Comprehensive comparative studies including protein-coding gene sequences with higher phylogenetic resolution and genome-based studies are needed to clarify the species delineation within the Streptomycetaceae
    corecore