20 research outputs found
Corrosion behavior of zirconia in acidulated phosphate fluoride
ABSTRACT Objective The corrosion behavior of zirconia in acidulated phosphate fluoride (APF) representing acidic environments and fluoride treatments was studied. Material and Methods Zirconia rods were immersed in 1.23% and 0.123% APF solutions and maintained at 37°C for determined periods of time. Surfaces of all specimens were imaged using digital microscopy and scanning electron microscopy (SEM). Sample mass and dimensions were measured for mass loss determination. Samples were characterized by powder X-ray diffraction (XRD) to detect changes in crystallinity. A biosensor based on electrochemical impedance spectroscopy (EIS) was used to detect ion dissolution of material into the immersion media. Results Digital microscopy revealed diminishing luster of the materials and SEM showed increased superficial corrosion of zirconia submerged in 1.23% APF. Although no structural change was found, the absorption of salts (sodium phosphate) onto the surface of the materials bathed in 0.123% APF was significant. EIS indicated a greater change of impedance for the immersion solutions with increasing bathing time. Conclusion Immersion of zirconia in APF solutions showed deterioration limited to the surface, not extending to the bulk of the material. Inferences on zirconia performance in acidic oral environment can be elucidated from the study
Is the bonding of self-adhesive cement sensitive to root region and curing mode?
Abstract Objectives To evaluate the influence of two curing techniques on the degree of conversion (DC) of resin cements and on bond strength (BS) of fiber posts in different regions of root dentin. Material and Methods Twenty single-rooted premolars were endodontically treated, and the post spaces were prepared. The roots were randomly divided into two groups (n=10), according to the activation mode of the resin cement RelyX™ U200 (3M ESPE Saint Paul, MN, USA): conventional (continuous activation mode) and soft-start activation mode (Ramp). The posts (WhitePost DC/FGM) were cemented according to the manufacturer’s recommendations and, after one week, the roots were cross-sectioned into six discs each of 1-mm thickness, and the cervical, medium, and apical thirds of the root canals were identified. The DC was evaluated under micro-Raman spectroscopy and the BS was evaluated by the push-out test. The data were analyzed by two-way ANOVA and Tukey’s test (α=0.05). Results Neither the activation mode nor the root regions affected the DC of the resin cement. Higher BS was achieved in the soft-start group (p=0.036); lower BS was observed in the apical third compared to the other root regions (p<0.001). Irrespective of the activation mode and root region, the mixed failure mode was the most prevalent. Conclusion The BS of fiber posts to root canals can be improved by soft-started polymerization. The DC was not affected by the curing mode
Correlation between clinical performance and degree of conversion of resin cements: a literature review
AbstractResin-based cements have been frequently employed in clinical practice to lute indirect restorations. However, there are numerous factors that may compromise the clinical performance of those cements. The aim of this literature review is to present and discuss some of the clinical factors that may affect the performance of current resin-based luting systems. Resin cements may have three different curing mechanisms: chemical curing, photo curing or a combination of both. Chemically cured systems are recommended to be used under opaque or thick restorations, due to the reduced access of the light. Photo-cured cements are mainly indicated for translucent veneers, due to the possibility of light transmission through the restoration. Dual-cured are more versatile systems and, theoretically, can be used in either situation, since the presence of both curing mechanisms might guarantee a high degree of conversion (DC) under every condition. However, it has been demonstrated that clinical procedures and characteristics of the materials may have many different implications in the DC of currently available resin cements, affecting their mechanical properties, bond strength to the substrate and the esthetic results of the restoration. Factors such as curing mechanism, choice of adhesive system, indirect restorative material and light-curing device may affect the degree of conversion of the cement and, therefore, have an effect on the clinical performance of resin-based cements. Specific measures are to be taken to ensure a higher DC of the luting system to be used
Effect of different topical fluoride applications on the surface roughness of a colored compomer
OBJECTIVE: The aim of this study was to evaluate the effect of neutral sodium fluoride (NNaF) gel and acidulated phosphate fluoride (APF) gel on the surface roughness of colored compomer (Twinky Star), conventional compomer (Compoglass F) and resin-modified glass-ionomer cement (RMGIC) (Photac-Fil). MATERIAL AND METHODS: A total of 45 standardized disc-shaped specimens were prepared for each material. After 24 h, finishing and polishing of specimens were done with aluminum oxide disc. Surface treatments with topical fluoride agents or distilled water (control) were performed four times, and interspersed with 8 pH cycles, simulating high cariogenic challenges. After the treatment, the surface roughness (Ra) was determined using a profilometer. In each group, specimens with Ra closest to the mean were examined with a scanning electron microscope (SEM) at ×1,000 and ×3,500 magnifications. Two-way ANOVA was used to evaluate Ra measurements, and the differences in Ra values between subgroups for each material and each topical applications were compared by Tukey's highly significant difference pairwise comparisons. RESULTS: No statistically significant difference in Ra between the Twinky Star and Compoglass F was found. However, Photac Fil showed significantly higher Ra than these materials after all surface treatments. There was a general trend of Ra increase from controls to NNaF and APF gels for all materials. SEM observations revealed that the surface micromorphology of Twinky-Star did not differ significantly from that of Compoglass F. CONCLUSION: Both the compomers and the RMGIC showed significantly higher surface roughness when subjected to APF gel application