172 research outputs found

    Solving the riddle of codon usage preferences: a test for translational selection

    Get PDF
    Translational selection is responsible for the unequal usage of synonymous codons in protein coding genes in a wide variety of organisms. It is one of the most subtle and pervasive forces of molecular evolution, yet, establishing the underlying causes for its idiosyncratic behaviour across living kingdoms has proven elusive to researchers over the past 20 years. In this study, a statistical model for measuring translational selection in any given genome is developed, and the test is applied to 126 fully sequenced genomes, ranging from archaea to eukaryotes. It is shown that tRNA gene redundancy and genome size are interacting forces that ultimately determine the action of translational selection, and that an optimal genome size exists for which this kind of selection is maximal. Accordingly, genome size also presents upper and lower boundaries beyond which selection on codon usage is not possible. We propose a model where the coevolution of genome size and tRNA genes explains the observed patterns in translational selection in all living organisms. This model finally unifies our understanding of codon usage across prokaryotes and eukaryotes. Helicobacter pylori, Saccharomyces cerevisiae and Homo sapiens are codon usage paradigms that can be better understood under the proposed model

    Long wavelength optical coherence tomography for painted objects

    Get PDF
    Optical Coherence Tomography has been successfully applied to the imaging of painted objects in recent years. However, a significant limitation is the low penetration depth of OCT in paint because of the high opacity of paint due to either scattering or absorption. It has been shown that the optimum spectral window for OCT imaging of paint layers is around 2.2μm in wavelength. In this paper, we demonstrate a 1950nm OCT for imaging painted objects using a superfluorescent fiber source at low power

    High resolution fourier domain optical coherence tomography at 2 microns for painted objects

    Get PDF
    Optical Coherence Tomography has been successfully applied to the non-invasive imaging of subsurface microstructure of a variety of materials from biological tissues to painted objects of art. One of the limitations of the technique is the low depth of penetration due to the strong scattering and absorption in the material. Previous studies found that for paint materials, the optimum window for large depth of penetration is around 2.2 microns. This is also true for many other materials with low water content. We have previously demonstrated OCT systems in this wavelength regime for imaging with improved depth of penetration. In this paper, we present an improved 2 micron high resolution Fourier domain OCT system using a broadband supercontinuum source. The system achieved a depth resolution of 9 microns in air (or 6 microns in paint or any polymer)

    High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source

    Get PDF
    A 220 nm bandwidth supercontinuum source in the two-micron wavelength range has been developed for use in a Fourier domain optical coherence tomography (FDOCT) system. This long wavelength source serves to enhance probing depth in highly scattering material with low water content. We present results confirming improved penetration depth in high opacity paint samples while achieving the high axial resolution needed to resolve individual paint layers. This is the first FDOCT developed in the 2 μm wavelength regime that allows fast, efficient capturing of 3D image cubes at a high axial resolution of 13 μm in air (or 9 μm in paint)

    Single clad coiled optical fibre for high power lasers and amplifiers

    Get PDF
    We demonstrate a new concept in development of high power fibre lasers based on single clad coiled fibres. Combination of a highly efficient Yb-doped fibre and glass-air waveguide for multi-point pump injection allows to reduce device length to less than 3

    Is visual estimation of passive range of motion in the pediatric lower limb valid and reliable

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Visual estimation (VE) is an essential tool for evaluation of range of motion. Few papers discussed its validity in children orthopedics' practice. The purpose of our study was to assess validity and reliability of VE for passive range of motions (PROMs) of children's lower limbs.</p> <p>Methods</p> <p>Fifty typically developing children (100 lower limbs) were examined. Visual estimations for PROMs of hip (flexion, adduction, abduction, internal and external rotations), knee (flexion and popliteal angle) and ankle (dorsiflexion and plantarflexion) were made by a pediatric orthopaedic surgeon (POS) and a 5<sup>th </sup>year resident in orthopaedics. A last year medical student did goniometric measurements. Three weeks later, same measurements were performed to assess reliability of visual estimation for each examiner.</p> <p>Results</p> <p>Visual estimations of the POS were highly reliable for hip flexion, hip rotations and popliteal angle (ρ<sub>c </sub>≥ 0.8). Reliability was good for hip abduction, knee flexion, ankle dorsiflexion and plantarflexion (ρ<sub>c </sub>≥ 0.7) but poor for hip adduction (ρ<sub>c </sub>= 0.5). Reproducibility for all PROMs was verified. Resident's VE showed high reliability (ρ<sub>c </sub>≥ 0.8) for hip flexion and popliteal angle. Good correlation was found for hip rotations and knee flexion (ρ<sub>c </sub>≥ 0.7). Poor results were obtained for ankle PROMs (ρ<sub>c </sub>< 0.6) as well as hip adduction and abduction, the results of which not being reproducible. Influence of experience was clearly demonstrated for PROMs of hip rotations, adduction and abduction as well as ankle plantarflexion.</p> <p>Conclusion</p> <p>Accuracy of VE of passive hip flexion and knee PROMs is high regardless of the examiner's experience. Same accuracy can be found for hip rotations and abduction whenever VE is performed by an experienced examiner. Goniometric evaluation is recommended for passive hip adduction and for ankle PROMs.</p

    Using Basic Science to Design a Clinical Trial: Baseline Characteristics of Women Enrolled in the Kronos Early Estrogen Prevention Study (KEEPS)

    Get PDF
    Observational and epidemiological studies suggest that menopausal hormone therapy (MHT) reduces cardiovascular disease (CVD) risk. However, results from prospective trials showed neutral or adverse effects most likely due to differences in participant demographics, such as age, timing of initiation of treatment, and preexisting cardiovascular disease, which reflected in part the lack of basic science information on mechanisms of action of hormones on the vasculature at the time clinical trials were designed. The Kronos Early Estrogen Replacement Study (KEEPS) is a prospective, randomized, controlled trial designed, using findings from basic science studies, to test the hypothesis that MHT when initiated early in menopause reduces progression of atherosclerosis. KEEPS participants are younger, healthier, and within 3 years of menopause thus matching more closely demographics of women in prior observational and epidemiological studies than women in the Women’s Health Initiative hormone trials. KEEPS will provide information relevant to the critical timing hypothesis for MHT use in reducing risk for CVD
    corecore