117 research outputs found
Insights into the function of silver as an oxidation catalyst by ab initio, atomistic thermodynamics
To help understand the high activity of silver as an oxidation catalyst,
e.g., for the oxidation of ethylene to epoxide and the dehydrogenation of
methanol to formaldehyde, the interaction and stability of oxygen species at
the Ag(111) surface has been studied for a wide range of coverages. Through
calculation of the free energy, as obtained from density-functional theory and
taking into account the temperature and pressure via the oxygen chemical
potential, we obtain the phase diagram of O/Ag(111). Our results reveal that a
thin surface-oxide structure is most stable for the temperature and pressure
range of ethylene epoxidation and we propose it (and possibly other similar
structures) contains the species actuating the catalysis. For higher
temperatures, low coverages of chemisorbed oxygen are most stable, which could
also play a role in oxidation reactions. For temperatures greater than about
775 K there are no stable oxygen species, except for the possibility of O atoms
adsorbed at under-coordinated surface sites Our calculations rule out thicker
oxide-like structures, as well as bulk dissolved oxygen and molecular
ozone-like species, as playing a role in the oxidation reactions.Comment: 15 pages including 9 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Sub-surface Oxygen and Surface Oxide Formation at Ag(111): A Density-functional Theory Investigation
To help provide insight into the remarkable catalytic behavior of the
oxygen/silver system for heterogeneous oxidation reactions, purely sub-surface
oxygen, and structures involving both on-surface and sub-surface oxygen, as
well as oxide-like structures at the Ag(111) surface have been studied for a
wide range of coverages and adsorption sites using density-functional theory.
Adsorption on the surface in fcc sites is energetically favorable for low
coverages, while for higher coverage a thin surface-oxide structure is
energetically favorable. This structure has been proposed to correspond to the
experimentally observed (4x4) phase. With increasing O concentrations, thicker
oxide-like structures resembling compressed Ag2O(111) surfaces are
energetically favored. Due to the relatively low thermal stability of these
structures, and the very low sticking probability of O2 at Ag(111), their
formation and observation may require the use of atomic oxygen (or ozone, O3)
and low temperatures. We also investigate diffusion of O into the sub-surface
region at low coverage (0.11 ML), and the effect of surface Ag vacancies in the
adsorption of atomic oxygen and ozone-like species. The present studies,
together with our earlier investigations of on-surface and
surface-substitutional adsorption, provide a comprehensive picture of the
behavior and chemical nature of the interaction of oxygen and Ag(111), as well
as of the initial stages of oxide formation.Comment: 17 pages including 14 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta
Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector,
the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are
measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and
(7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
BESII Detector Simulation
A Monte Carlo program based on Geant3 has been developed for BESII detector
simulation. The organization of the program is outlined, and the digitization
procedure for simulating the response of various sub-detectors is described.
Comparisons with data show that the performance of the program is generally
satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons
The branching fractions for the inclusive Cabibbo-favored ~K*0 and
Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample
of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with
the BES-II detector at the BEPC collider. The branching fractions for the
decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 ->
\~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and
BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching
fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X)
< 6.6%
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
Measurements of the Mass and Full-Width of the Meson
In a sample of 58 million events collected with the BES II detector,
the process J/ is observed in five different decay
channels: , , (with ), (with
) and . From a combined fit of all five
channels, we determine the mass and full-width of to be
MeV/ and
MeV/.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.
- …