10 research outputs found

    Comparison of hyperbolic and constant width simultaneous confidence bands in multiple linear regression under MVCS criterion

    No full text
    A simultaneous confidence band provides useful information on the plausible range of the unknown regression model, and different confidence bands can often be constructed for the same regression model. For a simple regression line, Liu and Hayter (2007) propose use of the area of the confidence set corresponding to a confidence band as an optimality criterion in comparison of confidence bands; the smaller the area of the confidence set, the better the corresponding confidence band. This minimum area confidence set (MACS) criterion can begeneralized to a minimum volume confidence set (MVCS) criterion in the study of confidence bands for a multiple linear regression model. In this paper hyperbolic and constant width confidence bands for a multiple linear regression model over a particular ellipsoidal region of the predictor variables are compared under the MVCS criterion. It is observed that whether one band is better than the other depends on the magnitude of one particular angle that determines the size of the predictor variable region. When the angle and so the size of the predictor variable region is small, the constant width band is better than the hyperbolic band but only marginally. When the angle and so the size of the predictor variable region is large the hyperbolic band can be substantially better than the constant width band

    Confusion Matrix

    No full text

    State Space Methods

    No full text

    Construction of exact simultaneous confidence bands for a simple linear regression model

    No full text
    A simultaneous confidence band provides a variety of inferences on the unknown components of a regression model. There are several recent papers using confidence bands for various inferential purposes; see for example, Sun et al. (1999), Spurrier (1999), Al-Saidy et al. (2003), Liu et al. (2004), Bhargava &amp; Spurrier (2004), Piegorsch et al. (2005) and Liu et al. (2007). Construction of simultaneous confidence bands for a simple linear regression model has a rich history, going back to the work of Working &amp; Hotelling (1929). The purpose of this article is to consolidate the disparate modern literature on simultaneous confidence bands in linear regression, and to provide expressions for the construction of exact 1 ?? level simultaneous confidence bands for a simple linear regression model of either one-sided or two-sided form. We center attention on the three most recognized shapes: hyperbolic, two-segment, and three-segment (which is also referred to as a trapezoidal shape and includes a constant-width band as a special case). Some of these expressions have already appeared in the statistics literature, and some are newly derived in this article. The derivations typically involve a standard bivariate t random vector and its polar coordinate transformation. <br/

    Comparison of hyperbolic and constant width simultaneous confidence bands in multiple linear regression under MVCS criterion

    Get PDF
    A simultaneous confidence band provides useful information on the plausible range of the unknown regression model, and different confidence bands can often be constructed for the same regression model. For a simple regression line, Liu and Hayter [W. Liu, A.J. Hayter, Minimum area confidence set optimality for confidence bands in simple linear regression, J. Amer. Statist. Assoc. 102 (477) (2007) pp. 181–190] proposed the use of the area of the confidence set corresponding to a confidence band as an optimality criterion in comparison of confidence bands; the smaller the area of the confidence set, the better the corresponding confidence band. This minimum area confidence set (MACS) criterion can be generalized to a minimum volume confidence set (MVCS) criterion in the study of confidence bands for a multiple linear regression model. In this paper hyperbolic and constant width confidence bands for a multiple linear regression model over a particular ellipsoidal region of the predictor variables are compared under the MVCS criterion. It is observed that whether one band is better than the other depends on the magnitude of one particular angle that determines the size of the predictor variable region. When the angle and hence the size of the predictor variable region is small, the constant width band is better than the hyperbolic band but only marginally. When the angle and hence the size of the predictor variable region is large the hyperbolic band can be substantially better than the constant width band
    corecore