1,412 research outputs found
Direct synthesis iron oxide nanoparticles using ramie, lemon and dragon fruit as green and low cost approach
Plant extracts have been used as agent reduction capping to synthesise various nanoparticlesdue to the process is a low cost, large-scale method and environmental friendly. Herein, ironoxide nanoparticles were synthesized using ramie, lemon and dragon fruit extracts. Thecharacterization results show that all synthesized iron oxide nanoparticles had almost similardiameters, shape and crystalline phases although different of plants extracts were used.Among the plants, ramie has cheapest market price in which the cost production of iron oxidenanoparticles can be reduced significantly.Keywords: iron oxide nanoparticles; scanning electron microscop
The open-charm radiative and pionic decays of molecular charmonium Y(4274)
In this work, we investigate the decay widths and the line shapes of the
open-charm radiative and pionic decays of Y(4274) with the
molecular charmonium assignment. Our calculation
indicates that the decay widths of and
can reach up to 0.05 keV and 0.75 keV,
respectively. In addition, the result of the line shape of the photon spectrum
of shows that there exists a very sharp
peak near the large end point of photon energy. The line shape of the pion
spectrum of is similar to that of the pion
spectrum of , where we also find a very
sharp peak near the large end point of pion energy. According to our
calculation, we suggest further experiments to carry out the search for the
open-charm radiative and pionic decays of Y(4274).Comment: 7 pages, 6 figures, 1 table. Published versio
Deterministically Driven Avalanche Models of Solar Flares
We develop and discuss the properties of a new class of lattice-based
avalanche models of solar flares. These models are readily amenable to a
relatively unambiguous physical interpretation in terms of slow twisting of a
coronal loop. They share similarities with other avalanche models, such as the
classical stick--slip self-organized critical model of earthquakes, in that
they are driven globally by a fully deterministic energy loading process. The
model design leads to a systematic deficit of small scale avalanches. In some
portions of model space, mid-size and large avalanching behavior is scale-free,
being characterized by event size distributions that have the form of
power-laws with index values, which, in some parameter regimes, compare
favorably to those inferred from solar EUV and X-ray flare data. For models
using conservative or near-conservative redistribution rules, a population of
large, quasiperiodic avalanches can also appear. Although without direct
counterparts in the observational global statistics of flare energy release,
this latter behavior may be relevant to recurrent flaring in individual coronal
loops. This class of models could provide a basis for the prediction of large
solar flares.Comment: 24 pages, 11 figures, 2 tables, accepted for publication in Solar
Physic
Bi-Objective Community Detection (BOCD) in Networks using Genetic Algorithm
A lot of research effort has been put into community detection from all
corners of academic interest such as physics, mathematics and computer science.
In this paper I have proposed a Bi-Objective Genetic Algorithm for community
detection which maximizes modularity and community score. Then the results
obtained for both benchmark and real life data sets are compared with other
algorithms using the modularity and MNI performance metrics. The results show
that the BOCD algorithm is capable of successfully detecting community
structure in both real life and synthetic datasets, as well as improving upon
the performance of previous techniques.Comment: 11 pages, 3 Figures, 3 Tables. arXiv admin note: substantial text
overlap with arXiv:0906.061
Superradiance of low density Frenkel excitons in a crystal slab of three-level atoms: Quantum interference effect
We systematically study the fluorescence of low density Frenkel excitons in a
crystal slab containing V-type three-level atoms. Based on symmetric
quasi-spin realization of SU(3) in large limit, the two-mode exciton
operators are invoked to depict various collective excitations of the
collection of these V-type atoms starting from their ground state. By making
use of the rotating wave approximation, the light intensity of radiation for
the single lattice layer is investigated in detail. As a quantum coherence
effect, the quantum beat phenomenon is discussed in detail for different
initial excitonic states. We also test the above results analytically without
the consideration of the rotating wave approximation and the self-interaction
of radiance field is also included.Comment: 18pages, 17 figures. Resubmit to Phys. Rev.
- …