11 research outputs found
Optical measurement of magnetic anisotropy in thin garnet films
This paper describes an improved optical method for measuring locally the cubic and uniaxial magnetic anisotropy fields in thin garnet films. The derivative of the in-plane component of the magnetization is measured, using a double modulation technique which combines polarization modulation with field modulation. A simple graphical method is devised to calculateH k andH u from the extrema in this derivative curve. The results of measurements on magnetic garnet films obtained by different methods are compared. Local measurements of the anisotropy induced by substrate facet strain are described
Biallelic loss-of-function variants in RABGAP1 cause a novel neurodevelopmental syndrome
PURPOSE: RABGAP1 is a GTPase-activating protein implicated in a variety of cellular and molecular processes, including mitosis, cell migration, vesicular trafficking, and mTOR signaling. There are no known Mendelian diseases caused by variants in RABGAP1. METHODS: Through GeneMatcher, we identified 5 patients from 3 unrelated families with homozygous variants in the RABGAP1 gene found on exome sequencing. We established lymphoblastoid cells lines derived from an affected individual and her parents and performed RNA sequencing and functional studies. Rabgap1 knockout mice were generated and phenotyped. RESULTS: We report 5 patients presenting with a common constellation of features, including global developmental delay/intellectual disability, microcephaly, bilateral sensorineural hearing loss, and seizures, as well as overlapping dysmorphic features. Neuroimaging revealed common features, including delayed myelination, white matter volume loss, ventriculomegaly, and thinning of the corpus callosum. Functional analysis of patient cells revealed downregulated mTOR signaling and abnormal localization of early endosomes and lysosomes. Rabgap1 knockout mice exhibited several features in common with the patient cohort, including microcephaly, thinning of the corpus callosum, and ventriculomegaly. CONCLUSION: Collectively, our results provide evidence of a novel neurodevelopmental syndrome caused by biallelic loss-of-function variants in RABGAP1